تربيوم

(تم التحويل من تيربيوم)

التربيوم بالإنجليزية Terbium ، هو عنصر كيميائي له الرمز Tb و العدد الذري 65 في الجدول الدوري وهو من اللانثانيدات. It is a silvery-white, rare earth metal that is malleable, and ductile. The ninth member of the lanthanide series, terbium is a fairly electropositive metal that reacts with water, evolving hydrogen gas. Terbium is never found in nature as a free element, but it is contained in many minerals, including cerite, gadolinite, monazite, xenotime and euxenite.

Terbium, 00Tb
Terbium-2.jpg
Terbium
المظهرsilvery white
الوزن الذري العياري Ar°(Tb)
Terbium في الجدول الدوري
Hydrogen (reactive nonmetal)
Helium (noble gas)
Lithium (alkali metal)
Beryllium (alkaline earth metal)
Boron (metalloid)
Carbon (reactive nonmetal)
Nitrogen (reactive nonmetal)
Oxygen (reactive nonmetal)
Fluorine (reactive nonmetal)
Neon (noble gas)
Sodium (alkali metal)
Magnesium (alkaline earth metal)
Aluminium (post-transition metal)
Silicon (metalloid)
Phosphorus (reactive nonmetal)
Sulfur (reactive nonmetal)
Chlorine (reactive nonmetal)
Argon (noble gas)
Potassium (alkali metal)
Calcium (alkaline earth metal)
Scandium (transition metal)
Titanium (transition metal)
Vanadium (transition metal)
Chromium (transition metal)
Manganese (transition metal)
Iron (transition metal)
Cobalt (transition metal)
Nickel (transition metal)
Copper (transition metal)
Zinc (post-transition metal)
Gallium (post-transition metal)
Germanium (metalloid)
Arsenic (metalloid)
Selenium (reactive nonmetal)
Bromine (reactive nonmetal)
Krypton (noble gas)
Rubidium (alkali metal)
Strontium (alkaline earth metal)
Yttrium (transition metal)
Zirconium (transition metal)
Niobium (transition metal)
Molybdenum (transition metal)
Technetium (transition metal)
Ruthenium (transition metal)
Rhodium (transition metal)
Palladium (transition metal)
Silver (transition metal)
Cadmium (post-transition metal)
Indium (post-transition metal)
Tin (post-transition metal)
Antimony (metalloid)
Tellurium (metalloid)
Iodine (reactive nonmetal)
Xenon (noble gas)
Caesium (alkali metal)
Barium (alkaline earth metal)
Lanthanum (lanthanide)
Cerium (lanthanide)
Praseodymium (lanthanide)
Neodymium (lanthanide)
Promethium (lanthanide)
Samarium (lanthanide)
Europium (lanthanide)
Gadolinium (lanthanide)
Terbium (lanthanide)
Dysprosium (lanthanide)
Holmium (lanthanide)
Erbium (lanthanide)
Thulium (lanthanide)
Ytterbium (lanthanide)
Lutetium (lanthanide)
Hafnium (transition metal)
Tantalum (transition metal)
Tungsten (transition metal)
Rhenium (transition metal)
Osmium (transition metal)
Iridium (transition metal)
Platinum (transition metal)
Gold (transition metal)
Mercury (post-transition metal)
Thallium (post-transition metal)
Lead (post-transition metal)
Bismuth (post-transition metal)
Polonium (post-transition metal)
Astatine (metalloid)
Radon (noble gas)
Francium (alkali metal)
Radium (alkaline earth metal)
Actinium (actinide)
Thorium (actinide)
Protactinium (actinide)
Uranium (actinide)
Neptunium (actinide)
Plutonium (actinide)
Americium (actinide)
Curium (actinide)
Berkelium (actinide)
Californium (actinide)
Einsteinium (actinide)
Fermium (actinide)
Mendelevium (actinide)
Nobelium (actinide)
Lawrencium (actinide)
Rutherfordium (transition metal)
Dubnium (transition metal)
Seaborgium (transition metal)
Bohrium (transition metal)
Hassium (transition metal)
Meitnerium (unknown chemical properties)
Darmstadtium (unknown chemical properties)
Roentgenium (unknown chemical properties)
Copernicium (post-transition metal)
Nihonium (unknown chemical properties)
Flerovium (unknown chemical properties)
Moscovium (unknown chemical properties)
Livermorium (unknown chemical properties)
Tennessine (unknown chemical properties)
Oganesson (unknown chemical properties)


Tb

Bk
گادولينيومterbiumdysprosium
الرقم الذري (Z)65
المجموعةn/a
الدورةperiod 6
المستوى الفرعي  f-block
التوزيع الإلكتروني[Xe] 4f9 6s2
الإلكترونات بالغلاف2, 8, 18, 27, 8, 2
الخصائص الطبيعية
الطور at د.ح.ض.قsolid
نقطة الانصهار1629 K ​(1356 °س، ​2473 °F)
نقطة الغليان3396 K ​(3123 °س، ​5653 °ف)
الكثافة (بالقرب من د.ح.غ.)8.23 ج/سم³
حين يكون سائلاً (عند ن.إ.)7.65 ج/سم³
حرارة الانصهار10.15 kJ/mol
حرارة التبخر391 kJ/mol
السعة الحرارية المولية28.91 J/(mol·K)
ضغط البخار
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 1789 1979 (2201) (2505) (2913) (3491)
الخصائص الذرية
الكهرسلبيةمقياس پاولنگ: 1.2 (?)
طاقات التأين
  • الأول: 565.8 kJ/mol
  • الثاني: 1110 kJ/mol
  • الثالث: 2114 kJ/mol
نصف القطر الذريempirical: 177 pm
نصف قطر التكافؤ194±5 pm
Color lines in a spectral range
خصائص أخرى
التواجد الطبيعيprimordial
البنية البلوريةhexagonal close-packed (hcp)
Hexagonal close packed crystal structure for terbium
سرعة الصوت قضيب رفيع2620 م/ث (عند 20 °س)
قضيب رفيع11.1 W/(m·K)
التمدد الحراريat r.t. α, poly: 10.3 µm/(m⋅K)
المقاومة الكهربائيةα, poly: 1.150 µΩ⋅m (at r.t.)
الترتيب المغناطيسيparamagnetic at 300 K
القابلية المغناطيسية+146000×10−6 cm3/mol (273 K)[1]
معامل يونگα form: 55.7 GPa
معامل القصα form: 22.1 GPa
معاير الحجمα form: 38.7 GPa
نسبة پواسونα form: 0.261
صلادة ڤيكرز450–865 MPa
صلادة برينل675–1200 MPa
رقم كاس7440-27-9
التاريخ
التسميةafter Ytterby (Sweden), where it was mined
الاكتشاف وأول عزلCarl Gustaf Mosander (1843)
نظائر الterbium v • [{{fullurl:Template:{{{template}}}|action=edit}} e] 
قالب:جدول نظائر terbium غير موجود
تصنيف التصنيف: Terbium
| المراجع

Swedish chemist Carl Gustaf Mosander discovered terbium as a chemical element in 1843. He detected it as an impurity in yttrium oxide, Y
2
O
3
. Yttrium and terbium, as well as erbium and ytterbium, are named after the village of Ytterby in Sweden. Terbium was not isolated in pure form until the advent of ion exchange techniques.

Terbium is used to dope calcium fluoride, calcium tungstate and strontium molybdate in solid-state devices, and as a crystal stabilizer of fuel cells that operate at elevated temperatures. As a component of Terfenol-D (an alloy that expands and contracts when exposed to magnetic fields more than any other alloy), terbium is of use in actuators, in naval sonar systems and in sensors.

Most of the world's terbium supply is used in green phosphors. Terbium oxide is in fluorescent lamps and television and monitor cathode-ray tubes (CRTs). Terbium green phosphors are combined with divalent europium blue phosphors and trivalent europium red phosphors to provide trichromatic lighting technology, a high-efficiency white light used for standard illumination in indoor lighting.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

السمات

Physical properties

معدن التربيوم هو معدن أبيض فضء من الأتربة النادرة ، ويتميز بليونته التي تصل لإمكانية قطعه بالسكين. ويتم سبكه على درجة حرارة 1289 درجة مئوية.

Terbium is a silvery-white rare earth metal that is malleable, ductile and soft enough to be cut with a knife.[2] It is relatively stable in air compared to the earlier, more reactive lanthanides in the first half of the lanthanide series.[3] Terbium exists in two crystal allotropes with a transformation temperature of 1289 °C between them.[2] The 65 electrons of a terbium atom are arranged in the electron configuration [Xe]4f96s2. The eleven 4f and 6s electrons are valence. Only three electrons can be removed before the nuclear charge becomes too great to allow further ionization, but in the case of terbium, the stability of the half-filled [Xe]4f7 configuration allows further ionization of a fourth electron in the presence of very strong oxidizing agents such as fluorine gas.[2]

The terbium(III) cation is brilliantly fluorescent, in a bright lemon-yellow color that is the result of a strong green emission line in combination with other lines in the orange and red. The yttrofluorite variety of the mineral fluorite owes its creamy-yellow fluorescence in part to terbium. Terbium easily oxidizes, and is therefore used in its elemental form specifically for research. Single terbium atoms have been isolated by implanting them into fullerene molecules.[4]

Terbium has a simple ferromagnetic ordering at temperatures below 219 K. Above 219 K, it turns into a helical antiferromagnetic state in which all of the atomic moments in a particular basal plane layer are parallel, and oriented at a fixed angle to the moments of adjacent layers. This unusual antiferromagnetism transforms into a disordered paramagnetic state at 230 K.[5]

Chemical properties

Terbium metal is an electropositive element and oxidizes in the presence of most acids (such as sulfuric acid), all of the halogens, and even water.[6]

2 Tb (s) + 3 H
2
SO
4
→ 2 Tb3+ + 3 SO2−
4
+ 3 H
2
2 Tb + 3 X
2
→ 2 TbX
3
(X = F, Cl, Br, I)
2 Tb (s) + 6 H
2
O → 2 Tb(OH)
3
+ 3 H
2

Terbium also oxidizes readily in air to form a mixed terbium(III,IV) oxide:[6]

8 Tb + 7 O
2
→ 2 Tb
4
O
7

The most common oxidation state of terbium is +3 (trivalent), such as TbCl 3. In the solid state, tetravalent terbium is also known, in compounds such as TbO
2
and TbF
4
.[7] In solution, terbium typically forms trivalent species, but can be oxidized to the tetravalent state with ozone in highly basic aqueous conditions.[8]

The coordination and organometallic chemistry of terbium is similar to other lanthanides. In aqueous conditions, terbium can be coordinated by nine water molecules, which are arranged in a tricapped trigonal prismatic molecular geometry. Complexes of terbium with lower coordination number are also known, typically with bulky ligands like bis(trimethyl-silylamide), which forms the three-coordinate Tb[N(SiMe
3
)
2
]
3
complex.

Most coordination and organometallic complexes contain terbium in the trivalent oxidation state. Divalent (Tb2+) complexes are also known, usually with bulky cyclopentadienyl-type ligands.[9][10][11] A few coordination compounds containing terbium in its tetravalent state are also known.[12][13][14]

Oxidation states

Like most rare-earth elements and lanthanides, terbium is usually found in the +3 oxidation state. Like cerium and praseodymium, terbium can also form a +4 oxidation state, although it is unstable in water.[15] However, it is possible for terbium to also be found in the 0, +1 and +2 oxidation states.

Compounds

مقال رئيسي: Terbium compounds
Terbium sulfate, Tb
2
(SO
4
)
3
(top), fluoresces green under ultraviolet light (bottom)

Terbium combines with nitrogen, carbon, sulfur, phosphorus, boron, selenium, silicon and arsenic at elevated temperatures, forming various binary compounds such as TbH
2
, TbH
3
, TbB
2
, Tb
2
S
3
, TbSe, TbTe and TbN.[16] In those compounds, Tb mostly exhibits the oxidation states +3 and sometimes +2. Terbium(II) halides are obtained by annealing Tb(III) halides in presence of metallic Tb in tantalum containers. Terbium also forms sesquichloride Tb
2
Cl
3
, which can be further reduced to TbCl by annealing at 800 °C. This terbium(I) chloride forms platelets with layered graphite-like structure.[17]

Terbium(IV) fluoride is the only halide that tetravalent terbium can form, and has strong oxidizing properties. It is also a strong fluorinating agent, emitting relatively pure atomic fluorine when heated, rather than the mixture of fluoride vapors emitted from cobalt(III) fluoride or cerium(IV) fluoride.[18] It can be obtained by reacting terbium(III) chloride or terbium(III) fluoride with fluorine gas at 320 °C:[19]

2 TbF3 + F2 → 2 TbF4

When TbF4 and CsF is mixed in a stoichiometric ratio, in a fluorine gas atmosphere, CsTbF5 is obtained. It is an orthorhombic crystal, with space group Cmca, with a layered structure composed of [TbF8]4− and 11-coordinated Cs+.[20] The compound BaTbF6 can be prepared in a similar method. It is an orthorhombic crystal, with space group Cmma. The compound [TbF8]4− also exists.[21]

Other compounds include

Isotopes

Naturally occurring terbium is composed of its only stable isotope, terbium-159; the element is thus mononuclidic and monoisotopic. Thirty-six radioisotopes have been characterized, with the heaviest being terbium-171 (with an atomic mass of 170.95330(86) u) and lightest being terbium-135 (exact mass unknown).قالب:NUBASE2016 The most stable synthetic radioisotopes of terbium are terbium-158, with a half-life of 180 years, and terbium-157, with a half-life of 71 years. All of the remaining radioactive isotopes have half-lives that are much less than a quarter of a year, and the majority of these have half-lives that are less than half a minute.قالب:NUBASE2016 The primary decay mode before the most abundant stable isotope, 159Tb, is electron capture, which results in production of gadolinium isotopes, and the primary mode after is beta minus decay, resulting in dysprosium isotopes.قالب:NUBASE2016

The element also has 27 nuclear isomers, with masses of 141–154, 156, and 158 (not every mass number corresponds to only one isomer). The most stable of them are terbium-156m, with a half-life of 24.4 hours, and terbium-156m2, with a half-life of 22.7 hours; this is longer than half-lives of most ground states of radioactive terbium isotopes, except those with mass numbers 155–161.قالب:NUBASE2016

التاريخ

أكتشف التربيوم في عام 1843 بواسطة الكيميائي السويدي كارل جوستاف موساندر ، والذي اعتبره من الشوائب العالقة في أكسيد الايرتيم 2O3 ، وسمي بهذا الإسم نسبة لقرية إيرتيم في السويد.

 
Carl Gustaf Mosander, the scientist who discovered terbium, lanthanum and erbium.

Swedish chemist Carl Gustaf Mosander discovered terbium in 1843. He detected it as an impurity in yttrium oxide, Y
2
O
3
. Yttrium is named after the village of Ytterby in Sweden. Terbium was not isolated in pure form until the advent of ion exchange techniques.[22][23][24]:701[25][22][26][27]

Mosander first separated yttria into three fractions, all named for the ore: yttria, erbia, and terbia. "Terbia" was originally the fraction that contained the pink color, due to the element now known as erbium. "Erbia" (containing what is now known as terbium) originally was the fraction that was essentially colorless in solution. The insoluble oxide of this element was noted to be tinged brown.

Later workers had difficulty in observing the minor colorless "erbia", but the soluble pink fraction was impossible to miss. Arguments went back and forth as to whether erbia even existed. In the confusion, the original names got reversed, and the exchange of names stuck, so that the pink fraction referred eventually to the solution containing erbium (which in solution, is pink). It is now thought that workers using double sodium or potassium sulfates to remove ceria from yttria inadvertently lost the terbium into the ceria-containing precipitate. What is now known as terbium was only about 1% of the original yttria, but that was sufficient to impart a yellowish color to the yttrium oxide. Thus, terbium was a minor component in the original fraction containing it, where it was dominated by its immediate neighbors, gadolinium and dysprosium.

Thereafter, whenever other rare earths were teased apart from this mixture, whichever fraction gave the brown oxide retained the terbium name, until at last, the brown oxide of terbium was obtained in pure form. The 19th century investigators did not have the benefit of the UV fluorescence technology to observe the brilliant yellow or green Tb(III) fluorescence that would have made terbium easier to identify in solid mixtures or solutions.[23]


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

التواجد

لا يوجد التريبيوم إطلاقا منفردا في الطبيعة ، ولكنه يوجد في العديد من المعادن بما فيهم السيريت ، جادولنيت ، والمونازيت ((Ce,LaTh,Nd,Y)PO4 ، وتحتوي تلك العناصر على نسبة 0.03 % من التريبيوم.

 
Xenotime

Terbium is contained along with other rare earth elements in many minerals, including monazite ((Ce,La,Th,Nd,Y)PO
4
with up to 0.03% terbium), xenotime (YPO
4
) and euxenite ((Y,Ca,Er,La,Ce,U,Th)(Nb,Ta,Ti)
2
O
6
with 1% or more terbium). The crust abundance of terbium is estimated as 1.2 mg/kg.[16] No terbium-dominant mineral has yet been found.[28]

Currently, the richest commercial sources of terbium are the ion-adsorption clays of southern China; the concentrates with about two-thirds yttrium oxide by weight have about 1% terbia. Small amounts of terbium occur in bastnäsite and monazite; when these are processed by solvent extraction to recover the valuable heavy lanthanides as samarium-europium-gadolinium concentrate, terbium is recovered therein. Due to the large volumes of bastnäsite processed relative to the ion-adsorption clays, a significant proportion of the world's terbium supply comes from bastnäsite.[2]

In 2018, a rich terbium supply was discovered off the coast of Japan's Minamitori Island, with the stated supply being "enough to meet the global demand for 420 years".[29]

Production

Crushed terbium-containing minerals are treated with hot concentrated sulfuric acid to produce water-soluble sulfates of rare earths. The acidic filtrates are partially neutralized with caustic soda to pH 3–4. Thorium precipitates out of solution as hydroxide and is removed. After that the solution is treated with ammonium oxalate to convert rare earths into their insoluble oxalates. The oxalates are decomposed to oxides by heating. The oxides are dissolved in nitric acid that excludes one of the main components, cerium, whose oxide is insoluble in HNO
3
. Terbium is separated as a double salt with ammonium nitrate by crystallization.[16]

The most efficient separation routine for terbium salt from the rare-earth salt solution is ion exchange. In this process, rare-earth ions are sorbed onto suitable ion-exchange resin by exchange with hydrogen, ammonium or cupric ions present in the resin. The rare earth ions are then selectively washed out by suitable complexing agents. As with other rare earths, terbium metal is produced by reducing the anhydrous chloride or fluoride with calcium metal. Calcium and tantalum impurities can be removed by vacuum remelting, distillation, amalgam formation or zone melting.[16]

Applications

Terbium is used as a dopant in calcium fluoride, calcium tungstate, and strontium molybdate, materials that are used in solid-state devices, and as a crystal stabilizer of fuel cells which operate at elevated temperatures, together with ZrO
2
.[2]

Terbium is also used in alloys and in the production of electronic devices. As a component of Terfenol-D, terbium is used in actuators, in naval sonar systems, sensors, in the SoundBug device (its first commercial application), and other magnetomechanical devices. Terfenol-D is a terbium alloy that expands or contracts in the presence of a magnetic field. It has the highest magnetostriction of any alloy.[30]

Terbium oxide is used in green phosphors in fluorescent lamps and color TV tubes. Sodium terbium borate is used in solid state devices. The brilliant fluorescence allows terbium to be used as a probe in biochemistry, where it somewhat resembles calcium in its behavior. Terbium "green" phosphors (which fluoresce a brilliant lemon-yellow) are combined with divalent europium blue phosphors and trivalent europium red phosphors to provide the trichromatic lighting technology which is by far the largest consumer of the world's terbium supply. Trichromatic lighting provides much higher light output for a given amount of electrical energy than does incandescent lighting.[2]

Terbium is also used to detect endospores, as it acts as an assay of dipicolinic acid based on photoluminescence.[31]

Precautions

As with the other lanthanides, terbium compounds are of low to moderate toxicity, although their toxicity has not been investigated in detail. Terbium has no known biological role.[2]


المركبات

تتضمن مركبات التريبيوم:

النظائر المشعة

الإحتياطات

التريبيوم مثل باقي اللانثنيدات ، له درجة سمية من متوسطة إلى كبيرة ، وذلك بالرغم من عدم وجود دراسات معملية مفصلة. ولا يعرف لعنصر التريبيوم دور بيولوجي محدد.

قراءات إضافية

  • D.M. Gruen, W.C. Koehler, and J.J. Katz (April 1951). "Higher Oxides of the Lanthanide Elements: Terbium Dioxide" (PDF). Journal of the American Chemical Society: 1475.{{cite journal}}: CS1 maint: multiple names: authors list (link)

انظر أيضا


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

وصلات خارجية

المصادر

قالب:Terbium compounds

  1. ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4.
  2. ^ أ ب ت ث ج ح خ Hammond, C. R. (2005). "The Elements". In Lide, D. R. (ed.). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. ISBN 978-0-8493-0486-6.
  3. ^ "Rare-Earth Metal Long Term Air Exposure Test". Retrieved 2009-05-05.
  4. ^ Shimada, T.; Ohno, Y.; Okazaki, T.; et al. (2004). "Transport properties of C78, C90 and Dy@C82 fullerenes – nanopeapods by field effect transistors". Physica E: Low-dimensional Systems and Nanostructures. 21 (2–4): 1089–1092. Bibcode:2004PhyE...21.1089S. doi:10.1016/j.physe.2003.11.197.
  5. ^ Jackson, M. (2000). "Magnetism of Rare Earth" (PDF). The IRM Quarterly. 10 (3): 1.
  6. ^ أ ب "Chemical reactions of Terbium". Webelements. Retrieved 2009-06-06.
  7. ^ Gruen, D. M.; Koehler, W. C.; Katz, J. J. (April 1951). "Higher Oxides of the Lanthanide Elements: Terbium Dioxide". Journal of the American Chemical Society. 73 (4): 1475–1479. doi:10.1021/ja01148a020.
  8. ^ Hobart, D. E.; Samhoun, K.; Young, J. P.; Norvell, V. E.; Mamantov, G.; Peterson, J. R. (1980). "Stabilization of Praseodymium(IV) and Terbium(IV) in Aqueous Carbonate Solution". Inorganic and Nuclear Chemistry Letters. 16 (5): 321–328. doi:10.1016/0020-1650(80)80069-9.
  9. ^ Jenkins, T. F.; Woen, D. H; Mohanam, L. N.; Ziller, J. W.; Furche, F.; Evans, W. J. (2018). "Tetramethylcyclopentadienyl Ligands Allow Isolation of Ln(II) Ions across the Lanthanide Series in [K(2.2.2-cryptand)][(C5Me4H)3Ln] Complexes". Organometallics. 141 (21): 3863–3873. doi:10.1021/acs.organomet.8b00557. S2CID 105379627.
  10. ^ Macdonald, M. R.; Bates, J. E.; Ziller, J. W.; Furche, F.; Evans, W. J. (2013). "Completing the Series of +2 Ions for the Lanthanide Elements: Synthesis of Molecular Complexes of Pr2+, Gd2+, Tb2+, and Lu2+". Journal of the American Chemical Society. 135 (21): 9857–9868. doi:10.1021/ja403753j. PMID 23697603.
  11. ^ Gould, C. A.; McClain, K. R.; Yu, J. M.; Groshens, T. J.; Furche, F. P.; Harvey, B. G.; Long, J. R. (2019-08-21). "Synthesis and Magnetism of Neutral, Linear Metallocene Complexes of Terbium(II) and Dysprosium(II)". Journal of the American Chemical Society. 141 (33): 12967–12973. doi:10.1021/jacs.9b05816. ISSN 0002-7863. PMID 31375028. S2CID 199388151.
  12. ^ Palumbo, C. T.; Zivkovic, I.; Scopelliti, R.; Mazzanti, M. (2019). "Molecular Complex of Tb in the +4 Oxidation State" (PDF). Journal of the American Chemical Society. 141 (25): 9827–9831. doi:10.1021/jacs.9b05337. PMID 31194529. S2CID 189814301.
  13. ^ Rice, N. T.; Popov, I. A.; Russo, D. R.; Bacsa, J.; Batista, E. R.; Yang, P.; Telser, J.; La Pierre, H. S. (2019-08-21). "Design, Isolation, and Spectroscopic Analysis of a Tetravalent Terbium Complex". Journal of the American Chemical Society. 141 (33): 13222–13233. doi:10.1021/jacs.9b06622. ISSN 0002-7863. OSTI 1558225. PMID 31352780. S2CID 207197096.
  14. ^ Willauer, A. R.; Palumbo, C. T.; Scopelliti, R.; Zivkovic, I.; Douair, I.; Maron, L.; Mazzanti, M. (2020). "Stabilization of the Oxidation State + IV in Siloxide-Supported Terbium Compounds" (PDF). Angewandte Chemie International Edition. 59 (9): 3549–3553. doi:10.1002/anie.201914733. PMID 31840371. S2CID 209385870.
  15. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  16. ^ أ ب ت ث Patnaik, Pradyot (2003). Handbook of Inorganic Chemical Compounds. McGraw-Hill. pp. 920–921. ISBN 978-0-07-049439-8. Retrieved 2009-06-06.
  17. ^ Cotton (2007). Advanced inorganic chemistry (6th ed.). Wiley-India. p. 1128. ISBN 978-81-265-1338-3.
  18. ^ Rau, J. V.; Chilingarov, N. S.; Leskiv, M. S.; Sukhoverkhov, V. F.; Rossi Albertini, V.; Sidorov, L. N. (August 2001). "Transition and rare earth metal fluorides as thermal sources of atomic and molecular fluorine". Le Journal de Physique IV. 11 (PR3): Pr3–109–Pr3-113. doi:10.1051/jp4:2001314.
  19. ^ Synthesis of Lanthanide and Actinide Compounds. Springer Science & Business Media. 1991. p. 60. ISBN 978-0-7923-1018-1. {{cite book}}: Cite uses deprecated parameter |authors= (help)
  20. ^ Gaumet, V.; Avignant, D. (1997). "Caesium Pentafluoroterbate, CsTbF5". Acta Crystallographica Section C: Crystal Structure Communications. 53 (9): 1176–1178. doi:10.1107/S0108270197005556.
  21. ^ Largeau, E.; El-Ghozzi, M.; Métin, J.; Avignant, D. (1997). "β-BaTbF6". Acta Crystallographica Section C: Crystal Structure Communications. 53 (5): 530–532. doi:10.1107/S0108270196014527.
  22. ^ أ ب Marshall, James L.; Marshall, Virginia R. (October 31, 2014). "Northern Scandinavia: An Elemental Treasure Trove". Science history : a traveler's guide. Vol. 1179. ACS Symposium Series. pp. 209–257. doi:10.1021/bk-2014-1179.ch011. ISBN 9780841230200.
  23. ^ أ ب Gupta, C. K.; Krishnamurthy, Nagaiyar (2004). Extractive metallurgy of rare earths. CRC Press. p. 5. ISBN 978-0-415-33340-5.
  24. ^ Weeks, Mary Elvira (1956). The discovery of the elements (6th ed.). Easton, PA: Journal of Chemical Education.
  25. ^ Weeks, Mary Elvira (1932). "The discovery of the elements: XVI. The rare earth elements". Journal of Chemical Education. 9 (10): 1751–1773. Bibcode:1932JChEd...9.1751W. doi:10.1021/ed009p1751.
  26. ^ Marshall, James L. Marshall; Marshall, Virginia R. Marshall (2015). "Rediscovery of the elements: The Rare Earths–The Beginnings" (PDF). The Hexagon: 41–45. Retrieved 30 December 2019.
  27. ^ Marshall, James L. Marshall; Marshall, Virginia R. Marshall (2015). "Rediscovery of the elements: The Rare Earths–The Confusing Years" (PDF). The Hexagon: 72–77. Retrieved 30 December 2019.
  28. ^ Hudson Institute of Mineralogy (1993–2018). "Mindat.org". www.mindat.org. Retrieved 14 January 2018.
  29. ^ Insider, Jeremy Berke, Business. "Japan Discovered a Rare-Earth Mineral Deposit This Year That Can Supply The World For Centuries". ScienceAlert. {{cite web}}: |first= has generic name (help)CS1 maint: multiple names: authors list (link)
  30. ^ Rodriguez, C; Rodriguez, M.; Orue, I.; Vilas, J.; Barandiaran, J.; Gubieda, M.; Leon, L. (2009). "New elastomer–Terfenol-D magnetostrictive composites". Sensors and Actuators A: Physical. 149 (2): 251. doi:10.1016/j.sna.2008.11.026.
  31. ^ Rosen, D. L.; Sharpless, C.; McGown, L. B. (1997). "Bacterial Spore Detection and Determination by Use of Terbium Dipicolinate Photoluminescence". Analytical Chemistry. 69 (6): 1082–1085. doi:10.1021/ac960939w.
الكلمات الدالة: