في الهندسة الوصفية القطعة المخروطية هو منحنى يُحصل عليها عند تقاطع مخروط بسطح لا يمر برأس و غير مماس له (التقاطع في هذه الحالات نقطة أو مستقيم).

مخروطيات

دُرست القطع المخروطية منذ وقت طويل يعود إلى 200 قبل الميلاد ، من قبل أبولونيو (apollonius من perga).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

التعريف التحليلي

في التحليل الرياضي القطوع المخروطية، هو المحل الهندسي لنقطة تتحرك بحيث تكون النسبة بين بعدها عن نقطة ثابتة وبعدها عن مستقيم ثابت تساوي نسبة ثابتة. تسمى هذه النسبة الإختلاف المركزي (Eccentricity)، كما تسمى النقطة الثابتة البؤرة (Focus)، أما المستقيم الثابت فيدعى الدليل (directrix).

 

حيث:

- P هي نقطة (x,y) تقع على القطع

- S البؤرة

- e معامل الاختلاف المركزي

- و m هي مسقط العمودي ل P على الدليل

إذا كان الإختلاف المركزي مساويا للوحدة (عدد الواحد الصحيح) سمي المنحنى قطعا مكافئا (Parabola)، وإذا كان الإختلاف المركزي أقل من الوحدة (الواحد الصحيح) سمي المنحنى قطعا ناقصا (Ellipse)، وإذا كان الإختلاف المركزي أكبر من الوحدة(الواحد) سمي المنحنى قطعا زائدا(Hyperbola).

وتسمى القطوع المكافئة والناقصة والزائدة بالقطوع المخروطية، لأنه يمكن أن تتولد نتيجة قطع السطح المخروطي بمستو في وضع معين.


المعادلة الجبرية

يمكن إعطاء معادلة القطع المخروطي بأشكال مختلفة منها:

  1. إذا كان الأختلاف المركزي يساوي هـ وكانت البؤرة عند نقطة الأصل (.،.) والدليل مستقيما عموديا على محور السينات يقطعه على بعد ف فإن معادلة القطع المخروطي تعطى بالمعادلة التالية:

(1 - هـ2)س2 + 2هـ2 ف س + ص2 = هـ2 ف

  1. معادلة من الدرجة الثانية في متغيرين س ، ص ويمكن كتابة هذه المعادلة على الصورة التالية:

أ س2 + 2ب س ص + جـ ص2 +2د س +2هـ ص + و = .

مواضيع ذات صلة

مصادر

  • معجم الرياضيات - تأليف لجنة من الخبراء من وزارة التربية والتعليم - عمان - طبعة مكتبة لبنان - ساحة رياض الصلح/ بيروت - 1980م.