جذر دالة

هذه المقالة عن جذور التوابع. لجذور الأعداد اطلع على جذر عدد.

في الرياضيات، يعرف جذر دالة f على أنه العنصر x من المجال الذي يحقق المعادلة التي تنعدم فيها الدالة f كما يلي:

مخطط تابع الجيب الرياضي، النقاط الحمراء توضح جذور المعادلة (نقاط التقاطع مع محور السينات)

مثلاً التابع المعطى بالصيغة التالية:

له جذر يساوي 3 لأن .

إذا كان التابع ممثل بمجموعة الأعداد الحقيقية، فإن جذوره هي نقاط تقاطع مخطط التابع مع محور السينات x، وهو ما يطلق عليه نقطة قطع محور السينات.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

انظر أيضاً