أوكسيتك

Auxetische Materialien.wiki.png

مواد الأوكسيتك إنگليزية: Auxetic Metamaterials هي مواد عندما تخضع لقوى شد، تصبح ذات سماكة أكبر في الاتجاه العمودي على القوة المطبقة، أي أن لها نسبة بواسون سالبة. يحدث هذا نتيجة بنية هذه المواد الخاصة التي تكون على شكل مفاصل والتي ترتخي عند شد هذه المواد. تتمتع هذه المواد بخصائص ميكيانيكية مثيرة مثل امتصاص الطاقة، ومقاومة الانكسار. مثل هذه الخواص قد تكون مفيدة في تطبيقات مثل واقيات الرصاص، مواد التعليب، حاميات الركبة والمرفق، مواد امتصاص الصدمات.

أصل المصطلح auxetic هو من اللغة اليونانية من الكلمة αὐξητικός(auxetikos) والتي تعني "الشيء الذي يميل للازدياد".

قد تتكون الأوكسيتكات من جزيء أو بنية مجهرية محددة.

عادة يكون لأوكسيتكات كثافة منخفضة، الذي يسمح للبنية المفصلة بالارتخاء.


تاريخ

يعود أوائل الأمثلة على أوكسيتك مركب إلى عام 1987 نشر في مجلة العلوم تحت عنوان "مواد رغوية ذات نسبة بواسون سالبة" ("Foam structures with a negative Poisson's ratio") من قبل R.S. Lakes من جامعة أيوا.

أمثلة

In footwear, auxetic design allows the sole to expand in size while walking or running, thereby increasing flexibility.

بعض الأمثلة على المواد الأوكستية:

  • الجلد الذي يغطي ثدي البقرة.
  • بعض الأحجار والفلزات.
  • أنسجة العظم الحي (هذه باقية موضع الشك).
  • Auxetic polyurethane foam[1][2]
  • Nuclei of mouse embryonic stem cells in exiting pluripotent state [3]
  • α-Cristobalite.[4]
  • Certain states of crystalline materials: Li, Na, K, Cu, Rb, Ag, Fe, Ni, Co, Cs, Au, Be, Ca, Zn, Sr, Sb, MoS2, BAsO4, and others.[5][6][7]
  • Certain rocks and minerals[8]
  • Graphene, which can be made auxetic through the introduction of vacancy defects[9][10]
  • Carbon diamond-like phases[11]
  • Two-dimensional tungsten semicarbide[12]
  • Noncarbon nanotubes[13][14]
  • Living bone tissue (although this is only suspected)[8]
  • Tendons within their normal range of motion.[15]
  • Specific variants of polytetrafluorethylene polymers such as Gore-Tex[16]
  • Several types of origami folds like the Diamond-Folding-Structure (RFS), the herringbone-fold-structure (FFS) or the miura fold,[17][18] and other periodic patterns derived from it.[19][20]
Production of auxetic metamaterials through the introduction of patterned microstructural cuts using direct laser cutting. The thin rubber surface with perforated architecture covers a spherical surface (orange)[21]
  • Tailored structures designed to exhibit special designed Poisson's ratios.[22][23][24][25][26][27]
  • Chain organic molecules. Recent researches revealed that organic crystals like n-paraffins and similar to them may demonstrate an auxetic behavior.[28]

التطبيقات

Auxetics are used in garments, origami, and chemicals.

Synthetic auxetics using a bio-inspired lattice structure (BLS) are reported to supply 13 times more stiffness, absorb 10% more energy, and exhibit a 60% greater strain range than existing auxetic materials. Potential applications include construction material, protective sports gear, and medical products.[29]

انظر أيضاً

المراجع

  1. ^ Li, Yan; Zeng, Changchun (2016). "On the successful fabrication of auxetic polyurethane foams: Materials requirement, processing strategy and conversion mechanism". Polymer. 87: 98–107. doi:10.1016/j.polymer.2016.01.076.
  2. ^ Li, Yan; Zeng, Changchun (2016). "Room-Temperature, Near-Instantaneous Fabrication of Auxetic Materials with Constant Poisson's Ratio over Large Deformation". Advanced Materials. 28 (14): 2822–2826. Bibcode:2016AdM....28.2822L. doi:10.1002/adma.201505650. PMID 26861805. S2CID 5260896.
  3. ^ خطأ استشهاد: وسم <ref> غير صحيح؛ لا نص تم توفيره للمراجع المسماة :0
  4. ^ Yeganeh-Haeri, Amir; Weidner, Donald J.; Parise, John B. (31 July 1992). "Elasticity of α-Cristobalite: A Silicon Dioxide with a Negative Poisson's Ratio". Science (in الإنجليزية). 257 (5070): 650–652. Bibcode:1992Sci...257..650Y. doi:10.1126/science.257.5070.650. ISSN 0036-8075. PMID 17740733. S2CID 137416819.
  5. ^ Goldstein, R.V.; Gorodtsov, V.A.; Lisovenko, D.S. (2013). "Classification of cubic auxetics". Physica Status Solidi B (in الإنجليزية). 250 (10): 2038–2043. Bibcode:2013PSSBR.250.2038G. doi:10.1002/pssb.201384233. S2CID 117802510.
  6. ^ Gorodtsov, V.A.; Lisovenko, D.S. (2019). "Extreme values of Young's modulus and Poisson's ratio of hexagonal crystals". Mechanics of Materials (in الإنجليزية). 134: 1–8. Bibcode:2019MechM.134....1G. doi:10.1016/j.mechmat.2019.03.017. S2CID 140493258.
  7. ^ Grima-Cornish, JN; Vella-Zarb, L; Grima, JN (2020). "Negative Linear Compressibility and Auxeticity in Boron Arsenate". Annalen der Physik. 532 (5) 1900550. Bibcode:2020AnP...53200550G. doi:10.1002/andp.201900550. S2CID 216414513.
  8. ^ أ ب Burke, Maria (7 June 1997), "A stretch of the imagination", New Scientist 154 (2085): 36, https://www.newscientist.com/article/mg15420854.200-a-stretch-of-the-imagination.html 
  9. ^ Grima, J. N.; Winczewski, S.; Mizzi, L.; Grech, M. C.; Cauchi, R.; Gatt, R.; Attard, D.; Wojciechowski, K.W.; Rybicki, J. (2014). "Tailoring Graphene to Achieve Negative Poisson's Ratio Properties". Advanced Materials. 27 (8): 1455–1459. doi:10.1002/adma.201404106. hdl:11380/1239858. PMID 25504060. S2CID 19738771.
  10. ^ Grima, Joseph N.; Grech, Michael C.; Grima-Cornish, James N.; Gatt, Ruben; Attard, Daphne (2018). "Giant Auxetic Behaviour in Engineered Graphene". Annalen der Physik (in الإنجليزية). 530 (6) 1700330. Bibcode:2018AnP...53000330G. doi:10.1002/andp.201700330. ISSN 1521-3889. S2CID 125889091.
  11. ^ Rysaeva, L.Kh.; Baimova, J.A.; Lisovenko, D.S.; Gorodtsov, V.A.; Dmitriev, S.V. (2019). "Elastic properties of fullerites and diamond-like phases". Physica Status Solidi B (in الإنجليزية). 256 (1) 1800049. Bibcode:2019PSSBR.25600049R. doi:10.1002/pssb.201800049.
  12. ^ Stocek, N.B.; Ullah, F.; Fanchini, G. (2024). "Giant auxetic behavior in remote-plasma synthesized few-layer tungsten semicarbide". Materials Horizons (in الإنجليزية). 11 (13): 3066–3075. doi:10.1039/D3MH02193A. PMID 38639038. {{cite journal}}: Check |pmid= value (help)
  13. ^ Goldstein, R.V.; Gorodtsov, V.A.; Lisovenko, D.S.; Volkov, M.A. (2014). "Negative Poisson's ratio for cubic crystals and nano/microtubes". Physical Mesomechanics (in الإنجليزية). 17 (2): 97–115. Bibcode:2014PhyMe..17...97G. doi:10.1134/S1029959914020027. S2CID 137267947.
  14. ^ Bryukhanov, I.A.; Gorodtsov, V.A.; Lisovenko, D.S. (2019). "Chiral Fe nanotubes with both negative Poisson's ratio and Poynting's effect. Atomistic simulation". Journal of Physics: Condensed Matter (in الإنجليزية). 31 (47): 475304. Bibcode:2019JPCM...31U5304B. doi:10.1088/1361-648X/ab3a04. PMID 31398716. S2CID 199519252.
  15. ^ Gatt R, Vella Wood M, Gatt A, Zarb F, Formosa C, Azzopardi KM, Casha A, Agius TP, Schembri-Wismayer P, Attard L, Chockalingam N, Grima JN (2015). "Negative Poisson's ratios in tendons: An unexpected mechanical response" (PDF). Acta Biomater. 24: 201–208. doi:10.1016/j.actbio.2015.06.018. PMID 26102335.
  16. ^ Auxetic materials, 9 March 2001, http://www.azom.com/details.asp?ArticleID=168 .
  17. ^ Mark, Schenk (2011). Folded Shell Structures, PhD Thesis (PDF). University of Cambridge, Clare College.
  18. ^ Lv, Cheng; Krishnaraju, Deepakshyam; Konjevod, Goran; Yu, Hongyu; Jiang, Hanqing (2015). "Origami based Mechanical Metamaterials". Scientific Reports. 4 5979. doi:10.1038/srep05979. PMC 4124469. PMID 25099402.
  19. ^ Eidini, Maryam; Paulino, Glaucio H. (2015). "Unraveling metamaterial properties in zigzag-base folded sheets". Science Advances. 1 (8) e1500224. arXiv:1502.05977. Bibcode:2015SciA....1E0224E. doi:10.1126/sciadv.1500224. ISSN 2375-2548. PMC 4643767. PMID 26601253.
  20. ^ Eidini, Maryam (2016). "Zigzag-base folded sheet cellular mechanical metamaterials". Extreme Mechanics Letters. 6: 96–102. arXiv:1509.08104. Bibcode:2016ExML....6...96E. doi:10.1016/j.eml.2015.12.006. S2CID 118424595.
  21. ^ Mizzi, Luke; Salvati, Enrico; Spaggiari, Andrea; Tan, Jin-Chong; Korsunsky, Alexander M. (2020). "Highly stretchable two-dimensional auxetic metamaterial sheets fabricated via direct-laser cutting". International Journal of Mechanical Sciences. 167 105242. doi:10.1016/j.ijmecsci.2019.105242. hdl:11380/1185053. ISSN 0020-7403. S2CID 210231091.
  22. ^ Tiemo Bückmann; et al. (May 2012). "Tailored 3D Mechanical Metamaterials Made by Dip-in Direct-Laser-Writing Optical Lithography". Advanced Materials. 24 (20): 2710–2714. Bibcode:2012AdM....24.2710B. doi:10.1002/adma.201200584. PMID 22495906. S2CID 205244958.
  23. ^ Grima-Cornish, James N.; Grima, Joseph N.; Evans, Kenneth E. (2017). "On the Structural and Mechanical Properties of Poly(Phenylacetylene) Truss-Like Hexagonal Hierarchical Nanonetworks". Physica Status Solidi B (in الإنجليزية). 254 (12) 1700190. Bibcode:2017PSSBR.25400190G. doi:10.1002/pssb.201700190. hdl:10871/31485. ISSN 1521-3951. S2CID 126184802.
  24. ^ Cabras, Luigi; Brun, Michele (2014). "Auxetic two-dimensional lattices with Poisson's ratio arbitrarily close to −1". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences (in الإنجليزية). 470 (2172) 20140538. arXiv:1407.5679. Bibcode:2014RSPSA.47040538C. doi:10.1098/rspa.2014.0538. ISSN 1364-5021.
  25. ^ Carta, Giorgio; Brun, Michele; Baldi, Antonio (2016). "Design of a porous material with isotropic negative Poisson's ratio". Mechanics of Materials (in الإنجليزية). 97: 67–75. Bibcode:2016MechM..97...67C. doi:10.1016/j.mechmat.2016.02.012.
  26. ^ Cabras, Luigi; Brun, Michele (2016). "A class of auxetic three-dimensional lattices". Journal of the Mechanics and Physics of Solids (in الإنجليزية). 91: 56–72. arXiv:1506.04919. Bibcode:2016JMPSo..91...56C. doi:10.1016/j.jmps.2016.02.010. S2CID 85547530.
  27. ^ Kaminakis, N; Stavroulakis, G (2012). "Topology optimization for compliant mechanisms, using evolutionary-hybrid algorithms and application to the design of auxetic materials". Composites Part B Engineering. 43 (6): 2655–2668. doi:10.1016/j.compositesb.2012.03.018.
  28. ^ Stetsenko, M (2015). "Determining the elastic constants of hydrocarbons of heavy oil products using molecular dynamics simulation approach". Journal of Petroleum Science and Engineering. 126: 124–130. Bibcode:2015JPSE..126..124S. doi:10.1016/j.petrol.2014.12.021.
  29. ^ Ghoshal, Abhimanyu (2025-03-08). "Sea sponges inspire super strong material for more durable buildings". New Atlas (in الإنجليزية الأمريكية). Retrieved 2025-03-13.

وصلات خارجية