افتح القائمة الرئيسية

مبرهنة القيمة الوسطى

مبرهنة القيمة الوسطى هي نتيجة لمبرهنة رول.إن التغير الجزئي لكل دالة ذات متغير حقيقي متواصلة و قابلة للاشتقاق يقابل ميل إحدى مماساتها. و بأكثر دقة : النص : لكل دالة ذات متغير حقيقي f : [a, b] -> R حيث a < b، متواصلة على النطاق المغلق [a, b] و قابلة للاشتقاق على النطاق المفتوح ]a, b[، تؤكد مبرهنة القيمة الوسطى على وجود عدد حقيقي c موجود في النطاق ]a, b[ بحيث :

.

في الحقيقة، و تبعا لهذه الشروط، تكون قيمة الدالة في a و b واحدة. و بتطبيق مبرهنة رول، فإنها تملك نقطة معينة c في ]a ; b[ و نظرا لأن المشتقة في c تساوي الصفر فإننا نجد المعادلة السابقة.

هندسيا، تقترح علينا مبرهنة القيمة الوسطى أنه لكل مستقيم يقطع منحنى قابل للاشتقاق، يوجد مستقيم مماس لهذا المنحنى مواز للمستقيم القاطع.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

لامساواة القيمة الوسطى

لتكن f : [a, b] -> R دالة ذات قيم حقيقية حيث a < b. إذا كان :

  • f متواصلة على النطاق المغلق [a, b]
  • f قابلة للاشتقاق على النطاق المفتوح ]a, b[
  • يوجد عدد حقيقي موجب k، حيث لكل عنصر x من ]a, b[، |f'(x)| < k،

فإن  .

الإستدلال :

نطبق مبرهنة القيمة الوسطى و نضع |f'(x)| < k.

و لتقريب الصورة نستطيع أن نصور المبرهنة كما يلي : "إذا كانت السرعة الآنية لسيارة ما غير قادرة على تجاوز سرعة 120 كم/س، فإن معدل سرعتها لا يمكنه ذلك."


مبرهنة القيمة الوسطى المعممّة

تطبّق هذه المبرهنة في حالة دالتين متواصلتين على [a ; b]، قابلتان للاشتقاق على ]a ; b[. و هو يؤكد وجود عدد حقيقي c من النطاق ]a ; b[ بحيث

 

هندسيا، تعني هذه المعادلة أن كل منحنى لدالة من   في   قابلة للاشتقاق، يملك مماسا موازيا لإحدى حباله. في حالة مخالفة g' للصفر على ]a ; b[، يمكن أن تكتب المعادلة

 

و تحت هذه الصيغة، تستعمل المبرهنة للاستدلال على قاعدة اوبيتال.

الإستدلال :

نطبق مبرهنة رول على الدالة
 
إن الدالة h متواصلة على [a ; b]، و قابلة للاشتقاق على ]a ; b[، و تساوي صفرا في a و b و بالتالي  . إذن يوجد عدد حقيقي c من ]a ; b[ بحيث h'(c) = 0. و هو ما يؤدي إلى
 
و لو كانت g' كذلك مخالفة للصفر على ]a ; b[ فإننا نستطيع أن نؤكد أن   و يكفي أن نقسم بهما فنجد
 

مبرهنة القيمة الوسطى و التكاملات

يمكن إعادة صياغة مبرهنة القيمة الوسطى في شكل تكامل. لكل دالتين ذوات متغيّر حقيقي، u و v متواصلتين على النطاق [a ; b]، حيث v مخالفة

للصفر على [a ; b]، يوجد عدد حقيقي c من ]a ، b[ حيث

 .

و هذه الكتابة منطقية نظرا لأن الدوال المتواصلة متكاملة محليا حسب ريمان.