كرة إيوالد Ewald's sphere
كرة إيوالد Ewald sphere هو منشأ هندسي يُستخدم في electron, neutron, and x-ray diffraction which shows the relationship between:
- the wavevector of the incident and diffracted beams,
- the diffraction angle for a given reflection,
- the reciprocal lattice of the crystal.
It was conceived by Paul Peter Ewald, a German physicist and crystallographer.[1] Ewald himself spoke of the sphere of reflection.[2] It is often simplified to the two-dimensional "Ewald's circle" model or may be referred to as the Ewald sphere.
منشأ إيوالد
A crystal can be described as a lattice of atoms, which in turn leads to the reciprocal lattice. With electrons, neutrons or x-rays there is diffraction by the atoms, and if there is an incident plane wave خطأ رياضيات (اعرض بصيغة MathML إن أمكن (تحت التجريب): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exp(2 \pi i \mathbf{k_0}\cdot \mathbf{r})} [أ] with a wavevector خطأ رياضيات (اعرض بصيغة MathML إن أمكن (تحت التجريب): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{k_0}} , there will be outgoing wavevectors خطأ رياضيات (اعرض بصيغة MathML إن أمكن (تحت التجريب): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{k_1}} and خطأ رياضيات (اعرض بصيغة MathML إن أمكن (تحت التجريب): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{k_2}} as shown in the diagram[3] after the wave has been diffracted by the atoms.
The energy of the waves (electron, neutron or x-ray) depends upon the magnitude of the wavevector, so if there is no change in energy (elastic scattering) these have the same magnitude, that is they must all lie on the Ewald sphere. In the Figure the red dot is the origin for the wavevectors, the black spots are reciprocal lattice points (vectors) and shown in blue are three wavevectors. For the wavevector خطأ رياضيات (اعرض بصيغة MathML إن أمكن (تحت التجريب): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{k_1}} the corresponding reciprocal lattice point خطأ رياضيات (اعرض بصيغة MathML إن أمكن (تحت التجريب): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{g_1}} lies on the Ewald sphere, which is the condition for Bragg diffraction. For خطأ رياضيات (اعرض بصيغة MathML إن أمكن (تحت التجريب): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{k_2}} the corresponding reciprocal lattice point خطأ رياضيات (اعرض بصيغة MathML إن أمكن (تحت التجريب): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{g_2}} is off the Ewald sphere, so خطأ رياضيات (اعرض بصيغة MathML إن أمكن (تحت التجريب): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{k_2} = \mathbf{k_0} + \mathbf{g_2} + \mathbf{s}} where خطأ رياضيات (اعرض بصيغة MathML إن أمكن (تحت التجريب): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{s}} is called the excitation error. The amplitude and also intensity of diffraction into the wavevector خطأ رياضيات (اعرض بصيغة MathML إن أمكن (تحت التجريب): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{k_2}} depends upon the Fourier transform of the shape of the sample,[3][4] the excitation error خطأ رياضيات (اعرض بصيغة MathML إن أمكن (تحت التجريب): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{s}} , the structure factor for the relevant reciprocal lattice vector, and also whether the scattering is weak or strong. For neutrons and x-rays the scattering is generally weak so there is mainly Bragg diffraction, but it is much stronger for electron diffraction.[3][5]
انظر أيضاً
المراجع
- ^ Ewald, P. P. (1921). "Die Berechnung optischer und elektrostatischer Gitterpotentiale". Annalen der Physik (in الألمانية). 369 (3): 253–287. Bibcode:1921AnP...369..253E. doi:10.1002/andp.19213690304.
- ^ Ewald, P. P. (1969). "Introduction to the dynamical theory of X-ray diffraction". Acta Crystallographica Section A. 25 (1): 103–108. Bibcode:1969AcCrA..25..103E. doi:10.1107/S0567739469000155.
- ^ أ ب ت John M., Cowley (1995). Diffraction physics. Elsevier. ISBN 0-444-82218-6. OCLC 247191522.
- ^ Rees, A. L. G.; Spink, J. A. (1950). "The shape transform in electron diffraction by small crystals". Acta Crystallographica. 3 (4): 316–317. Bibcode:1950AcCry...3..316R. doi:10.1107/s0365110x50000823. ISSN 0365-110X.
- ^ Peng, L.-M.; Dudarev, S. L.; Whelan, M. J. (2011). High energy electron diffraction and microscopy. Oxford: Oxford University Press. ISBN 978-0-19-960224-7. OCLC 656767858.
ملاحظات
- ^ In some physics texts the خطأ رياضيات (اعرض بصيغة MathML إن أمكن (تحت التجريب): رد غير صحيح ("Math extension cannot connect to Restbase.") من الخادم "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 \pi} is omitted