ملاحظ الحالة

(تم التحويل من ملاحظ لينبرغر)

ملاحظ لوننبرگر هو عبارة عن نظام يستعمل لحساب الحالة في نظام آخر و تكون مداخل الملاحظ هي مداخل و مخارج النظام وتكون مخارج الملاحظ هي حالات النظام المراد معرفة حالته. يستعمل ملاحظ لوننبرگر في التحكم عن طريق إرجاع الحالة.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ملاحظ الحالة النمطي

The state of a physical discrete-time system is assumed to satisfy

 
 



ملاحظ النمط المنزلق

 

where:

  • The   vector extends the scalar signum function to   dimensions. That is,
 
for the vector  .
  • The vector   has components that are the output function   and its repeated Lie derivatives. In particular,
 
where   is the ith Lie derivative of output function   along the vector field   (i.e., along   trajectories of the non-linear system). In the special case where the system has no input or has a relative degree of n,   is a collection of the output   and its   derivatives. Because the inverse of the Jacobian linearization of   must exist for this observer to be well defined, the transformation   is guaranteed to be a local diffeomorphism.
  • The diagonal matrix   of gains is such that
 
where, for each  , element   and suitably large to ensure reachability of the sliding mode.
  • The observer vector   is such that
 
where   here is the normal signum function defined for scalars, and   denotes an "equivalent value operator" of a discontinuous function in sliding mode.


The modified observation error can be written in the transformed states  . In particular,

 

and so

 

وبذلك:

  1. ما دام  , the first row of the error dynamics,  , will meet sufficient conditions to enter the   sliding mode in finite time.
  2. Along the   surface, the corresponding   equivalent control will be equal to  , and so  . Hence, so long as  , the second row of the error dynamics,  , will enter the   sliding mode in finite time.
  3. Along the   surface, the corresponding   equivalent control will be equal to  . Hence, so long as  , the  th row of the error dynamics,  , will enter the   sliding mode in finite time.

So, for sufficiently large   gains, all observer estimated states reach the actual states in finite time. In fact, increasing   allows for convergence in any desired finite time so long as each   function can be bounded with certainty. Hence, the requirement that the map   is a diffeomorphism (i.e., that its Jacobian linearization is invertible) asserts that convergence of the estimated output implies convergence of the estimated state. That is, the requirement is an observability condition.

In the case of the sliding mode observer for the system with the input, additional conditions are needed for the observation error to be independent of the input. For example, that

 

does not depend on time. The observer is then

 

انظر أيضاً

  هذه المقالة عبارة عن بذرة تحتاج للنمو والتحسين؛ فساهم في إثرائها بالمشاركة في تحريرها.