لنى هاو

(تم التحويل من لين هاو)

لـِنى ڤسترگارد هاو (و. ڤاي‌لى، الدنمارك، 13 نوفمبر 1959)، هي فيزيائية دنماركية، تعمل أستاذة كرسي مالنكروت للفيزياء والفيزياء التطبيقية في جامعة هارڤرد.[1] وحصلت على الدكتوراه من جامعة آرهوس. وفي عام 1999 نجحت مع فريق عمل بجامعة هارڤرد في إبطاء الضوء باستخدام مكثف بوز-أينشتاين إلى حوالي 17 م/ث، وفي عام 2001 تمكنت من إيقاف شعاع الضوء تماماً.[2] كنتيجة لهذه التجارب، أمكن تحويل الضوء إلى مادة، ثم إعادته مرة أخرى إلى هيئته الضوئية،[3] وهي العملية التي كانت لها آثارها الهامة في التشفير الكمومي quantum encryption والحوسبة الكمومية. عملت هاو في أواخر أعمالها على الربط بين الأنظمة الذرية شديدة البرودة والمقاييس النانومترية. بالإضافة إلى تدريسها للفيزياء العامة والفيزياء التطبيقية، درّست هاو علوم الطاقة في هارڤرد،[4] والتي اشتملت على شروحات للخلايا الشمسية والطاقة النووية الكامنة والبطاريات الكهربائية والتمثيل الضوئي. كما تشارك هاو أحيانًا كمتحدثة في المؤتمرات الدولية وصياغة السياسات العلمية للعديد من المؤسسات العلمية. أيضًا، كانت هاو المتحدثة الافتتاحية في مؤتمر أبحاث النخبة[5] الذي انعقد في كوبنهاگن في 7 فبراير 2013، الذي حضره وزراء حكوميون وكبار الباحثين في الدنمارك.[6] اعترافاً بإنجازاتها المتعددة، اختارتها مجلة دسكڤر في عام 2002 كأحد أهم 50 إمرأة في مجال العلوم.[7]

لنى هاو
Lene Hau
Professor Lene Hau in her laboratory at Harvard.jpg
لين هاو في مختبرها بجامعة هارڤرد
وُلِدَ13 نوفمبر 1959 (العمر 64 سنة)
الجنسيةدنماركية
المدرسة الأمجامعة آرهوس
اللقبالضوء المتباطيء، مكثفات بوز-أينشتاين، تكنولوجيا النانو، بصريات الكم
الجوائزوسام أولى رومر
جائزة جورج لدلي
زمالة مكارثر
جائزة ريگمور وكارل هولست-كنودسن للبحث العلمي
السيرة العلمية
المجالاتفيزياء وتكنولوجيا النانو
الهيئاتجامعة هارڤرد
معهد رولاند للعلوم
طلاب الدكتوراهناومي گنزبرگ، كريستوفر سلو، زكاري دوتون

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

المجال الأكاديمي

بعد حصولها على درجة البكالوريوس في الرياضيات عام 1984، واصلت هاو الدراسة في جامعة آرهوس للحصول على درجة الماجستير في الفيزياء والتي مُنحت بعد عامين. بالنسبة لدراسات الدكتوراه في نظرية الكم، عملت هاو على أفكار مماثلة لتلك المشاركة في كبلات الألياف البصرية التي تحمل الضوء، لكن عملها تضمن سلاسل من الذرات في بلورة السيليكون التي تحمل إلكترونات. بينما كانت تعمل نحو الدكتوراه الخاصة بها، قضت سبعة أشهر في سرن، في المختبر الأوروبي لفيزياء الجسيمات بالقرب من جنيڤ. حصلت على الدكتوراه من جامعة آرهوس في الدنمارك في عام 1991، ولكن بحلول هذا الوقت تغيرت اهتماماتها البحثية في الاتجاه. في عام 1991، انضمت إلى معهد رولاند للعلوم في كمبردج، مساتشوستس كعضو علمي، وبدأت في استكشاف إمكانيات الضوء البارد والذرات الباردة. في عام 1999، قبلت هاو تعيينًا لمدة عامين كزميل ما بعد الدكتوراه في جامعة هارفارد. تدريبها الرسمي في الفيزياء النظرية ولكن اهتمامها انتقل إلى البحث التجريبي في محاولة لخلق شكل جديد من المسألة المعروف باسم مكثف بوز-أينشتاين. تقدمت "هاو" إلى المؤسسة الوطنية للعلوم للحصول على أموال لصنع مجموعة من هذا المكثف، لكن تم رفضها على أساس أنها كانت نظرية يصعب عليها إجراء مثل هذه التجارب."[8] وبدون ردع، حصلت على تمويل بديل، وأصبحت واحدة من حفنة الأولى من علماء الفيزياء لإنشاء مثل هذه المكثفات. في سبتمبر 1999 عيينها گوردون مكاي أستاذة في الفيزياء التطبيقية وأستاذة في الفيزياء في جامعة هارڤرد.[9] وحصلت أيضًا على منصبها في عام 1999، وهي الآن مالينكرودت أستاذة في الفيزياء والفيزياء التطبيقية في جامعة هارڤرد. في عام 2001 أصبحت أول شخص يتوقف عن الضوء تمامًا،[10] باستخدام مكثف بوز-أينشتاين لتحقيق ذلك. ومنذ ذلك الحين أنتجت بحثًا غزيرًا وأعمالًا تجريبية جديدة في الشفافية المستحثة الكهرومغناطيسي، في مجالات مختلفة من فيزياء الكم، الضوئيات وساهمت في تطوير أجهزة الكم الجديدة والتطبيقات النانوية.


نقل الكيوبت

Hau and her associates at Harvard University "have demonstrated exquisite control over light and matter in several experiments, but her experiment with 2 condensates is one of the most compelling".[11] In 2006 they successfully transferred a qubit from light to a matter wave and back into light, again using Bose–Einstein condensates. Details of the experiment are discussed in the February 8, 2007 publication of the journal Nature.[12] The experiment relies on the way that, according to quantum mechanics, atoms may behave as waves as well as particles. This enables atoms to do some counterintuitive things, such as passing through two openings at once. Within a Bose–Einstein condensate a light pulse is compressed by a factor of 50 مليون، بدون فقدان أي معلومات مخزّنة ضمنها. In this Bose–Einstein condensate, information encoded in a light pulse can be transferred to the atom waves. Because all the atoms move coherently, the information does not dissolve into random noise. The light drives some of the cloud's roughly 1.8 million sodium atoms to enter into "quantum superposition" states, with a lower-energy component that stays put and a higher-energy component that travels between the two[مطلوب توضيح] clouds. A second 'control' laser then writes the shape of the pulse into the atom waves. When this control beam is turned off and the light pulse disappears, the 'matter copy' remains. Prior to this, researchers could not readily control optical information during its journey, except to amplify the signal to avoid fading. This experiment by Hau and her colleagues marked the first successful manipulation of coherent optical information. The new study is "a beautiful demonstration", says Irina Novikova, a physicist at the College of William and Mary in Williamsburg, VA. Before this result, she says, light storage was measured in milliseconds. "Here it's fractional seconds. It's a really dramatic time."[13]

Of its potential, Hau said "While the matter is traveling between the two Bose–Einstein condensates, we can trap it, potentially for minutes, and reshape it – change it – in whatever way we want. This novel form of quantum control could also have applications in the developing fields of quantum information processing and quantum cryptography."[14] Of the developmental implications, "This feat, the sharing around of quantum information in light-form and in not just one but two atom-forms, offers great encouragement to those who hope to develop quantum computers," said Jeremy Bloxham, dean of science in the Faculty of Arts and Sciences.[15] Hau was awarded the George Ledlie Prize for this work, Harvard's Provost Steven Hyman noting "her work is path-breaking. Her research blurs the boundaries between basic and applied science, draws on the talent and people of two Schools and several departments, and provides a literally glowing example of how taking daring intellectual risks leads to profound rewards."[15]

الذرات الباردة والأنظمة النانوية

 
A captured atom is ripped apart as its electron is sucked into the nanotube

In 2009 Hau and team laser-cooled clouds of one million rubidium atoms to just a fraction of a degree above absolute zero. They then launched this millimeter-long atomic cloud towards a suspended carbon nanotube, located some two centimeters away and charged to hundreds of volts. The results were published in 2010, heralding new interactions between cold atoms and nanoscale systems.[16] They observed that most atoms passed by, but approximately 10 per million were inescapably attracted, causing them to dramatically accelerate both in movement and in temperature. "At this point, the speeding atoms separate into an electron and an ion rotating in parallel around the nanowire, completing each orbit in just a few trillionths of a second. The electron eventually gets sucked into the nanotube via quantum tunneling, causing its companion ion to shoot away – repelled by the strong charge of the 300-volt nanotube – at a speed of roughly 26 kilometers per second, or 59,000 miles per hour."[17] Atoms can rapidly disintegrate, without having to collide with each other in this experiment. The team is quick to note that this effect is not produced by gravity, as calculated in blackholes that exist in space, but by the high electrical charge in the nanotube. The experiment combines nanotechnology with cold atoms to demonstrate a new type of high-resolution, single-atom, chip-integrated detector that may ultimately be able to resolve fringes from the interference of matter waves. The scientists also foresee a range of single-atom, fundamental studies made possible by their setup.[18]

جوائز

"Genius Grant" – زميل مكارثر 2001–2006[35]

منشورات

  • Lene Vestergaard Hau, Manipulating Light[43] Unit 7 of the Annenberg Foundation's "Physics for the 21st Century"
  • Anne Goodsell, Trygve Ristroph, J. A. Golovchenko, and Lene Vestergaard Hau, Field ionization of cold atoms near the wall of a single carbon nanotube[16] (2010)
  • Rui Zhang, Sean R. Garner, and Lene Vestergaard Hau, Creation of long-term coherent optical memory via controlled nonlinear interactions in Bose–Einstein condensates[44] (2009)
  • Naomi S. Ginsberg, Sean R. Garner, and Lene Vestergaard Hau, Coherent control of optical information with matter wave dynamics[45] (2007).
  • Naomi S. Ginsberg, Joachim Brand, Lene Vestergaard Hau, Observation of Hybrid Soliton Vortex-Ring Structures in Bose–Einstein Condensates[46] (2005).
  • Chien Liu, Zachary Dutton, Cyrus H. Behroozi, Lene Vestergaard Hau, Observation of coherent optical information storage in an atomic medium using halted light pulses[47]
  • Lene Vestergaard Hau, S. E. Harris, Zachary Dutton, Cyrus H. Behroozi, Light speed reduction to 17 metres per second in an ultracold atomic gas[48]

قراءات إضافية

  • Lene Vestergaard Hau, Quantum Optics: Slowing single photons[49]
  • Brian Murphy and Lene Vestergaard Hau, Electro-optical nanotraps for neutral atoms,[50]
  • Lene Vestergaard Hau, Optical information processing in Bose–Einstein condensates,[51]
  • Lene Vestergaard Hau, Quantum physics – Tangled memories,[52]
  • Lene Vestergaard Hau, Nonlinear optics: Shocking superfluids,[53]
  • Christopher Slowe, Laurent Vernac, Lene Vestergaard Hau, A High Flux Source of Cold Rubidium[54]
  • Christopher Slowe, Naomi S. Ginsberg, Trygve Ristroph, Anne Goodsell, and Lene Vestergaard Hau, Ultraslow Light & Bose–Einstein Condensates:Two-way Control with Coherent Light & Atom Fields [55]
  • Marin Soljacic, Elefterios Lidorikis, J. D. Joannopoulos, Lene Vestergaard Hau, Ultra Low-Power All-Optical Switching[56]
  • Trygve Ristroph, Anne Goodsell, J. A. Golovchenko, and Lene Vestergaard Hau, Detection and quantized conductance of neutral atoms near a charged carbon nanotube[57]
  • Zachary Dutton, Lene Vestergaard Hau, Storing and processing optical information with ultra-slow light in Bose–Einstein condensates[58]
  • Zachary Dutton, Naomi S. Ginsberg, Christopher Slowe, and Lene Vestergaard Hau, The Art of Taming Light: Ultra-slow and Stopped Light[59]
  • Lene Vestergaard Hau, Frozen Light [60]
  • Zachary Dutton, Michael Budde, Christopher Slowe, Lene Vestergaard Hau, Observation of quantum shock waves created with ultra-compressed slow light pulses in a Bose–Einstein Condensate[61]
  • Lene Vestergaard Hau, Taming Light with Cold Atoms[62] Invited feature article. Published by Institute for Physics, UK.
  • B. D. Busch, Chien Liu, Z. Dutton, C. H. Behroozi, L. Vestergaard Hau, Observation of interaction dynamics in finite-temperature Bose condensed atom clouds[63]
  • C. Liu, B.D. Busch, Z. Dutton, and L. V. Hau, Anisotropic Expansion of Finite Temperature Bose Gases – Emergence of Interaction Effects between Condensed and Non-Condensed Atoms,[64] Proceedings of the conference on New Directions in Atomic Physics, Cambridge, England, July 1998, eds. C. T. Whelan, R.M. Dreizler, J.H. Macek, and H.R.J Walters, (Plenum, 1999).
  • Lene Hau, BEC and Light Speeds of 38 miles/hr: Proceedings of the Workshop on Bose–Einstein Condensation and Degenerate Fermi Gases, from Workshop on Bose–Einstein Condensation and Degenerate Fermi Gases[65] Hau's talk: Podcast and image files.[66]
  • Lene Vestergaard Hau, B. D. Busch, Chien Liu, Zachary Dutton, Michael M. Burns, J. A. Golovchenko, Near Resonant Spatial Images of Confined Bose–Einstein Condensates in the 4-Dee Magnetic Bottle[67]
  • Lene Vestergaard Hau, B. D. Busch, Chien Liu, Michael M. Burns, J. A. Golovchenko, Cold Atoms and Creation of New States of Matter: Bose–Einstein Condensates, Kapitza States, and '2D Magnetic Hydrogen Atoms, (Photonic, Electronic and Atomic Collisions : Invited papers of the 20th International Conference of Electronic and Atomic Collisions (ICEAC) Vienna, Austria, July 23–29, 1997) F. Aumayr and H.P. Winter, editors[68]
  • Lene Vestergaard Hau, J. A. Golovchenko, and Michael M. Burns, Supersymmetry and the Binding of a Magnetic Atom to a Filamentary Current[69]
  • Lene Vestergaard Hau, J. A. Golovchenko, and Michael M. Burns, A new atomic beam source: The "candlestick" [70]
  • Lene Vestergaard Hau, Michael M. Burns, and J. A. Golovchenko, Bound states of guided matter waves: An atom and a charged wire [71]
  • "Absolute Zero and the Conquest of Cold"[72]
  • "Absolute Zero and the Conquest of Cold" Tom Schactman Pub Date: Dec. 1st, 1999 Publisher: Houghton Mifflin[73]


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

المصادر

  1. ^ "Lene Vestergaard Hau". www.seas.harvard.edu. Retrieved 2018-10-08.
  2. ^ أ ب "Lene Hau".
  3. ^ "Coherent control of optical information with matter wave dynamics" (PDF). harvard.edu.
  4. ^ "Physics 129. Energy Science | FAS Registrar's Office". Archived from the original on 2015-02-26.
  5. ^ Keynote speaker Lene Vestergaard Hau Archived 2013-12-17 at the Wayback Machine
  6. ^ jota. "Vi skal have flere med forsker-bacille i blodet — Uddannelses- og Forskningsministeriet". fivu.dk.
  7. ^ Svitil, Kathy (13 November 2002). "The 50 Most Important Women in Science". Discover. Retrieved 21 December 2014.
  8. ^ "Hau wins MacArthur". Archived from the original on 2011-09-28.
  9. ^ "Hau Receives Tenure; Physics Professor Slowed Light".
  10. ^ "Lene Hau". www.physicscentral.com.
  11. ^ "Physics for the 21st century" (PDF). learner.org.
  12. ^ Ball, Philip (2007). "Turning light into matter:Coherent control of optical information with matter wave dynamics". News@nature. doi:10.1038/news070205-8.
  13. ^ "Trapped in cloud of ultracold atoms, light stayed frozen for 1.5 seconds: technique, if improved, could lead to light-storage devices".
  14. ^ "Light Changed to Matter, Then Stopped and Moved".
  15. ^ أ ب "Hau awarded prestigious Ledlie". 2008-09-25.
  16. ^ أ ب Goodsell, Anne; Ristroph, Trygve; Golovchenko, J. A.; Hau, Lene Vestergaard (2010). "Field Ionization of Cold Atoms near the Wall of a Single Carbon Nanotube". Physical Review Letters. 104 (13): 133002. doi:10.1103/PhysRevLett.104.133002. PMC 3113630. PMID 20481881.
  17. ^ "Cold atoms and nanotubes come together in an atomic 'black hole'".
  18. ^ Goodsell, Anne; Ristroph, Trygve; Golovchenko, J. A; Hau, Lene Vestergaard (2010). "Physics – Ionizing atoms with a nanotube". Physical Review Letters. 104 (13): 133002. arXiv:1004.2644. Bibcode:2010PhRvL.104m3002G. doi:10.1103/PhysRevLett.104.133002. PMC 3113630. PMID 20481881.
  19. ^ "2011 honorary alum: Lene Vestergaard Hau". Archived from the original on 2014-10-23. Retrieved 2013-02-08.
  20. ^ "Hau Lab at Harvard".
  21. ^ "Videnskabernes Selskab".
  22. ^ "Hans Christian Oersted Lecture, 16 September 2010:Quantum control of light and matter – from the macroscopic to the nanoscale". dtu.dk. Archived from the original on 7 فبراير 2013. Retrieved 3 مارس 2013.
  23. ^ "Kvindelig lysgeni er Årets Verdensdansker". August 2010.
  24. ^ "Meet the 2010 National Security Science & Engineering Faculty Fellows | Armed with Science".
  25. ^ "Hau, Lene Vestergaard (Danish scientist)". Archived from the original on 2013-12-17. Retrieved 2013-02-08.
  26. ^ "Lene Hau and condensed matter physics, transcript | AAAS MemberCentral".
  27. ^ "Members List" (PDF). amacad.org.
  28. ^ "Hau biography".
  29. ^ Science, Carnegie. "Upcoming Events - Carnegie Institution for Science". carnegiescience.edu.
  30. ^ "Rigmor og Carl Holst-Knudsens Videnskabspris".
  31. ^ "Ledlie Prize for research expected to improve fiber optics and computing". Archived from the original on 2013-12-17.
  32. ^ "Richtmyer Memorial Lecture".
  33. ^ "The Nano-Lectures: Lene Hau". improbable.com.
  34. ^ Light at Bicycle Speed ...and Slower Yet! Archived 2013-02-04 at the Wayback Machine
  35. ^ Hau wins MacArthur Archived 2011-09-28 at the Wayback Machine
  36. ^ "128th National Meeting – Featured Speakers".
  37. ^ "Calendar of Events". Archived from the original on 2013-12-17.
  38. ^ "Forfattere, litteraturpriser mv". www.litteraturpriser.dk.
  39. ^ "Hau Awards".
  40. ^ "Mobil: Topdanmark".
  41. ^ "Gordon McKay — Harvard School of Engineering and Applied Sciences". 2013-03-18.
  42. ^ "Absolute Zero and the Conquest of Cold".
  43. ^ "Physics - Manipulating Light". www.learner.org.
  44. ^ Zhang, Rui; Garner, Sean R.; Hau, Lene Vestergaard (2009). "Creation of Long-Term Coherent Optical Memory via Controlled Nonlinear Interactions in Bose–Einstein Condensates". Physical Review Letters. 103 (23): 233602. arXiv:0909.3203. doi:10.1103/PhysRevLett.103.233602. PMID 20366149.
  45. ^ Ginsberg, Naomi S; Garner, Sean R; Hau, Lene Vestergaard (2007). "Coherent control of optical information with matter wave dynamics". Nature. 445 (7128): 623–626. doi:10.1038/nature05493. PMID 17287804.
  46. ^ Ginsberg, Naomi S.; Brand, Joachim; Hau, Lene Vestergaard (2005). "Observation of Hybrid Soliton Vortex-Ring Structures in Bose–Einstein Condensates". Physical Review Letters. 94 (4): 040403. arXiv:cond-mat/0408464. doi:10.1103/PhysRevLett.94.040403. PMID 15783535.
  47. ^ Liu, Chien; Dutton, Zachary; Behroozi, Cyrus H.; Hau, Lene Vestergaard (2001). "Observation of coherent optical information storage in an atomic medium using halted light pulses" (PDF). Nature. 409 (6819): 490–493. doi:10.1038/35054017. PMID 11206540.
  48. ^ Hau, Lene Vestergaard; Harris, S. E.; Dutton, Zachary; Behroozi, Cyrus H. (1999). "Light speed reduction to 17 metres per second in an ultracold atomic gas" (PDF). Nature. 397 (6720): 594–598. Bibcode:1999Natur.397..594H. doi:10.1038/17561.
  49. ^ Hau, Lene Vestergaard (2011). "Slowing single photons". Nature Photonics. 5 (4): 197–198. Bibcode:2011NaPho...5..197H. doi:10.1038/nphoton.2011.43.
  50. ^ "Catalog - Mendeley". www.mendeley.com.
  51. ^ Hau, Lene Vestergaard (2008). "Optical information processing in Bose–Einstein condensates" (PDF). Nature Photonics. 2 (8): 451–453. Bibcode:2008NaPho...2..451H. doi:10.1038/nphoton.2008.140.
  52. ^ Hau, Lene Vestergaard (2008). "Tangled memories". Nature. 452 (7183): 37–38. Bibcode:2008Natur.452...37H. doi:10.1038/452037a. PMID 18322518.
  53. ^ Hau, Lene Vestergaard (2007). "Shocking superfluids". Nature Physics. 3 (1): 13–14. Bibcode:2007NatPh...3...13H. doi:10.1038/nphys498.
  54. ^ A High Flux Source of Cold Rubidium Archived 2013-02-23 at archive.today
  55. ^ "Optics & Photonics News – Ultraslow Light & Bose–Einstein Condensates: Two-way Control with Coherent Light & Atom Fields".
  56. ^ Soljacic, Marin; Lidorikis, Elefterios; Joannopoulos, J. D; Lene Vestergaard Hau (2004). "Ultra Low-Power All-Optical Switching". Applied Physics Letters. 86 (17): 171101. arXiv:physics/0406001. Bibcode:2005ApPhL..86q1101S. doi:10.1063/1.1900956.
  57. ^ Ristroph, T; Goodsell, A; Golovchenko, JA; Hau, LV (2005). "Detection and quantized conductance of neutral atoms near a charged carbon nanotube". Phys Rev Lett. 94 (6): 066102. Bibcode:2005PhRvL..94f6102R. doi:10.1103/PhysRevLett.94.066102. PMID 15783752.
  58. ^ Dutton, Zachary; Hau, Lene Vestergaard (30 November 2004). "Storing and processing optical information with ultraslow light in Bose-Einstein condensates". Physical Review A. 70 (5): 053831. arXiv:quant-ph/0404018. Bibcode:2004PhRvA..70e3831D. doi:10.1103/PhysRevA.70.053831.
  59. ^ Dutton, Zachary; Ginsberg, Naomi S.; Slowe, Christopher; Hau, Lene Vestergaard (1 March 2004). "The art of taming light: ultra-slow and stopped light". Europhysics News. 35 (2): 33–39. Bibcode:2004ENews..35...33D. doi:10.1051/epn:2004201.
  60. ^ "Frozen Light: Scientific American and Special Scientific American Issue entitled "The Edge of Physics" (2003)". scientificamerican.com.
  61. ^ Dutton, Zachary; Budde, Michael; Slowe, Christopher; Hau, Lene Vestergaard (27 July 2001). "Observation of Quantum Shock Waves Created with Ultra- Compressed Slow Light Pulses in a Bose-Einstein Condensate". Science. 293 (5530): 663–668. arXiv:cond-mat/0107310. Bibcode:2001Sci...293..663D. doi:10.1126/science.1062527. PMID 11431534.
  62. ^ PhysicsWorld Archive » Volume 14 » Taming light with cold atoms
  63. ^ Busch, B. D.; Liu, Chien; Dutton, Z.; Behroozi, C. H.; Hau, L. Vestergaard (5 April 2018). "Observation of interaction dynamics in finite-temperature Bose condensed atom clouds". EPL (Europhysics Letters). 51 (5): 485. Bibcode:2000EL.....51..485B. CiteSeerX 10.1.1.586.3600. doi:10.1209/epl/i2000-00363-0 – via Institute of Physics.
  64. ^ Liu, Chien; Buschi, B. D.; Dutton, Zachary; Vestergaard Hau, Lene (1999). New Directions in Atomic Physics. pp. 363–367. doi:10.1007/978-1-4615-4721-1_41. ISBN 978-1-4613-7139-7.
  65. ^ "JILA Workshop on BEC and degenerate Fermi gases". condon.colorado.edu.
  66. ^ "Hau, February 1999 CTAMOP Workshop". condon.colorado.edu.
  67. ^ Near-resonant spatial images of confined Bose–Einstein condensates in a 4-Dee magnetic bottle Archived 2014-07-14 at the Wayback Machine
  68. ^ Lene Vestergaard Hau; Busch, B. D; Liu, Chien; Burns, Michael M; Golovchenko, J. A (1998). "Cold Atoms and Creation of New States of Matter: Bose-Einstein Condensates, Kapitza States, and '2D Magnetic Hydrogen Atoms'". Photonic, Electronic, and Atomic Collisions (Proceedings of the XX.ICPEAC, Vienna, Austria, July). World Scientific, Singapore. arXiv:cond-mat/9804277. Bibcode:1998cond.mat..4277V. {{cite book}}: Unknown parameter |editors= ignored (|editor= suggested) (help)
  69. ^ Vestergaard Hau, Lene; Golovchenko, J. A.; Burns, Michael M. (17 April 1995). "Supersymmetry and the Binding of a Magnetic Atom to a Filamentary Current". Physical Review Letters. 74 (16): 3138–3140. Bibcode:1995PhRvL..74.3138V. doi:10.1103/PhysRevLett.74.3138. PMID 10058121.
  70. ^ A new atomic beam source: The "candlestick" Archived 2013-02-23 at archive.today
  71. ^ Hau, Lene Vestergaard; Burns, Michael M.; Golovchenko, J. A. (1 May 1992). "Bound states of guided matter waves: An atom and a charged wire". Physical Review A. 45 (9): 6468–6478. Bibcode:1992PhRvA..45.6468H. doi:10.1103/PhysRevA.45.6468.
  72. ^ "Documentary charting the progress of scientists throughout history who attempted to harness the ultimate limit of cold, known as absolute zero". pbs.org.
  73. ^ "Absolute Zero and the Conquest of Cold". www.goodreads.com.

وصلات خارجية