قائمة إسقاطات الخرائط

التعديلات والإضافات المدعومة بمراجع مرحب بها.

توفر القائمة التالية نظرة عامة على بعض من أهم أو أكثر إسقاطات الخرائط شيوعاً. وحيث أن عدد إسقاطات الخرائط المحتملة غير محدود،[1] ليس هناك قائمة نهائية تشملها كلها.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

جدول الإسقاطات

الإسقاط صور النوع الخصائص المنشئ السنة ملاحظات
متساوي المستطيلات
= إسقاط الاسطوانات المتساوية التباع
= الإسقاط الجغرافي
= la carte parallélogrammatique
  اسطواني متساوي المستطيلات مارينوس الصوري 120ح. 120 الهندسة المبسطة؛ يتم الحفاظ على المسافات على امتداد خطوط الطول.

پلات كاري: حالة خاصة يكون فيها خط الاستواء متوازي القياس.

كاسيني
= كاسيني-سولدنر
  استطواني متساوي المستطيلات سيزار-فرنسوا كاسيني دى توري 1745 Transverse of equidistant projection; distances along central meridian are conserved.
Distances perpendicular to central meridian are preserved.
مركاتور
= رايت
  اسطواني متطابق جراردوس مركاتور 1569 Lines of constant bearing (rhumb lines) are straight, aiding navigation. Areas inflate with latitude, becoming so extreme that the map cannot show the poles.
شبكة مركاتور   اسطواني مرن گوگل 2005 Variant of Mercator that ignores Earth's ellipticity for fast calculation, and clips latitudes to ~85.05° for square presentation. De facto standard for Web mapping applications.
گاوس–كروگر
= گاوس المتطابق
= إسقاط عرضي (بيضاوي)
  اسطواني متطابق كارل فريدريش گاوس

يوهان هاينريش لويس كروگر

1822 This transverse, ellipsoidal form of the Mercator is finite, unlike the equatorial Mercator. Forms the basis of the Universal Transverse Mercator coordinate system.
گال التجسيمي
مشابه لبراون[من؟]
  اسطواني مرن جيمس گال 1855 Intended to resemble the Mercator while also displaying the poles. Standard parallels at 45°N/S.
Braun[من؟] is horizontally stretched version with scale correct at equator.
ميلر
= ميلر الاسطواني
  اسطواني مرن أوسبورن ميتلاند ميلر 1942 Intended to resemble the Mercator while also displaying the poles.
لامبرت الأسطواني متساوي المساحات   اسطواني متساوي المساحة يوهان هاينرش لامبرت 1772 Standard parallel at the equator. Aspect ratio of π (3.14). Base projection of the cylindrical equal-area family.
برمان   اسطواني متساوي المساحة ڤالتر برمان 1910 Horizontally compressed version of the Lambert equal-area. Has standard parallels at 30°N/S and an aspect ratio of 2.36.
هوبو-داير   اسطواني متساوي المساحة مايك داير 2002 Horizontally compressed version of the Lambert equal-area. Very similar are Trystan Edwards and Smyth equal surface (= Craster rectangular) projections with standard parallels at around 37°N/S. Aspect ratio of ~2.0.
گال–پيترز
= إسقاط گال العمودي
= پيترز
  اسطواني متساوي المساحة جيمس گال

(أرنو پيترز)

1855 Horizontally compressed version of the Lambert equal-area. Standard parallels at 45°N/S. Aspect ratio of ~1.6. Similar is Balthasart projection with standard parallels at 50°N/S.
الاسطواني المركزي   اسطواني منظوري (غير معروف) 1850ح. 1850 Practically unused in cartography because of severe polar distortion, but popular in panoramic photography, especially for architectural scenes.
سينوسويدال
= سانسون-فلامستيد
= مركاتور متساوي المساحة
  Pseudocylindrical متساوي المساحة، متساوي المستطيلات (عدة؛ الأول مجهول) 1600ح. 1600 Meridians are sinusoids; parallels are equally spaced. Aspect ratio of 2:1. Distances along parallels are conserved.
مولڤايد
= البيضاوي
= بابينت
= homolographic
  Pseudocylindrical متساوي المساحة كارل براندان مولڤايد 1805 خطوط الطول بيضاوية.
إكرت الثاني   Pseudocylindrical متساوي المساحة ماكس إكرت-گريافندورف 1906
إكرت الرابع   Pseudocylindrical متساوي المساحة ماكس إكرت-گريافندورف 1906 Parallels are unequal in spacing and scale; outer meridians are semicircles; other meridians are semiellipses.
إكرت السادس   Pseudocylindrical متساوي المساحة ماكس إكرت-گريافندورف 1906 Parallels are unequal in spacing and scale; meridians are half-period sinusoids.
أورتليوس البيضاوي   Pseudocylindrical مرن باتيستا أگنيز 1540

خطوط العرض دائرية.[2]

Goode homolosine   Pseudocylindrical متساوي المساحة جون پول گود 1923 Hybrid of Sinusoidal and Mollweide projections.
Usually used in interrupted form.
كاڤرايسكي السابع   Pseudocylindrical مرن ڤلاديمير ڤ. كاڤرايسكي 1939 Evenly spaced parallels. Equivalent to Wagner VI horizontally compressed by a factor of  .
روبنسون   Pseudocylindrical مرن أرثر هـ. روبنسون 1963 Computed by interpolation of tabulated values. Used by Rand McNally since inception and used by NGS 1988–98.
الأرض الطبيعية   Pseudocylindrical مرن توم پاترسون 2011 Computed by interpolation of tabulated values.
Tobler hyperelliptical   Pseudocylindrical متساوي المساحة والدو ر. توبلر 1973 A family of map projections that includes as special cases Mollweide projection, Collignon projection, and the various cylindrical equal-area projections.
ڤاگنر السادس   Pseudocylindrical مرن ك.هـ. ڤاگنر 1932 Equivalent to Kavrayskiy VII vertically compressed by a factor of  .
كولينون   Pseudocylindrical متساوي المساحة إدوار كولينون 1865ح. 1865 Depending on configuration, the projection also may map the sphere to a single diamond or a pair of squares.
HEALPix   Pseudocylindrical متساوي المساحة كريزيستوف م. گورسكي 1997 Hybrid of Collignon + Lambert cylindrical equal-area
Boggs eumorphic   Pseudocylindrical متساوي المساحة صمويل وايتمور بوگس 1929 The equal-area projection that results from average of sinusoidal and Mollweide y-coordinates and thereby constraining the x coordinate.
Craster parabolic
=Putniņš P4
  Pseudocylindrical متساوي المساحة جون كراستر 1929 Meridians are parabolas. Standard parallels at 36°46′N/S; parallels are unequal in spacing and scale; 2:1 Aspect.
McBryde-Thomas flat-pole quartic
= مكبرايد-توماس #4
  Pseudocylindrical متساوي المساحة فليكس و. مكبرايد، پول توماس 1949 Standard parallels at 33°45′N/S; parallels are unequal in spacing and scale; meridians are fourth-order curves. Distortion-free only where the standard parallels intersect the central meridian.
Quartic authalic   Pseudocylindrical متساوي المساحة كارل توماس، أوسكار أدامز 1937

1944

Parallels are unequal in spacing and scale. No distortion along the equator. Meridians are fourth-order curves.
تاميز   Pseudocylindrical من جون موير 1965 Standard parallels 45°N/S. Parallels based on Gall stereographic, but with curved meridians. Developed for Bartholomew Ltd., The Times Atlas.
Loximuthal   Pseudocylindrical مرن كارل سيمون، والدو توبلر 1935, 1966 From the designated centre, lines of constant bearing (rhumb lines/loxodromes) are straight and have the correct length. Generally asymmetric about the equator.
Aitoff   Pseudoazimuthal مرن David A. Aitoff 1889 Stretching of modified equatorial azimuthal equidistant map. Boundary is 2:1 ellipse. Largely superseded by Hammer.
Hammer
= Hammer-Aitoff
variations: Briesemeister; Nordic
  Pseudoazimuthal متساوي المساحة إرنست هامر 1892 Modified from azimuthal equal-area equatorial map. Boundary is 2:1 ellipse. Variants are oblique versions, centred on 45°N.
Winkel tripel   Pseudoazimuthal Compromise Oswald Winkel 1921 Arithmetic mean of the equirectangular projection and the Aitoff projection. Standard world projection for the NGS 1998–present.
Van der Grinten   Other Compromise Alphons J. van der Grinten 1904 Boundary is a circle. All parallels and meridians are circular arcs. Usually clipped near 80°N/S. Standard world projection of the NGS 1922–88.
Equidistant conic
= simple conic
  Conic Equidistant Based on Ptolemy's 1st Projection 100ح. 100 Distances along meridians are conserved, as is distance along one or two standard parallels[3]
Lambert conformal conic   Conic Conformal Johann Heinrich Lambert 1772 Used in aviation charts.
Albers conic   Conic Equal-area Heinrich C. Albers 1805 Two standard parallels with low distortion between them.
Werner   Pseudoconical Equal-area, Equidistant Johannes Stabius 1500ح. 1500 Distances from the North Pole are correct as are the curved distances along parallels and distances along central meridian.
Bonne   Pseudoconical, cordiform Equal-area Bernardus Sylvanus 1511 Parallels are equally spaced circular arcs and standard lines. Appearance depends on reference parallel. General case of both Werner and sinusoidal
Bottomley   Pseudoconical Equal-area Henry Bottomley 2003 Alternative to the Bonne projection with simpler overall shape

Parallels are elliptical arcs
Appearance depends on reference parallel.

American polyconic   Pseudoconical Compromise Ferdinand Rudolph Hassler 1820ح. 1820 Distances along the parallels are preserved as are distances along the central meridian.
Rectangular polyconic   Pseudoconical Compromise U.S. Coast Survey 1853ح. 1853 Latitude along which scale is correct can be chosen. Parallels meet meridians at right angles.
Latitudinally equal-differential polyconic Pseudoconical Compromise China State Bureau of Surveying and Mapping 1963 Polyconic: parallels are non-concentric arcs of circles.
Azimuthal equidistant
=Postel
zenithal equidistant
  Azimuthal Equidistant Abū Rayḥān al-Bīrūnī 1000ح. 1000 Used by the USGS in the National Atlas of the United States of America.

Distances from centre are conserved.
Used as the emblem of the United Nations, extending to 60° S.

Gnomonic   Azimuthal Gnomonic Thales (possibly) 580 BCح. 580 BC All great circles map to straight lines. Extreme distortion far from the center. Shows less than one hemisphere.
Lambert azimuthal equal-area   Azimuthal Equal-area Johann Heinrich Lambert 1772 The straight-line distance between the central point on the map to any other point is the same as the straight-line 3D distance through the globe between the two points.
المجسم   Azimuthal Conformal هيپارخوس (نشره) 200 ق.م.ح. 200 ق.م. Map is infinite in extent with outer hemisphere inflating severely, so it is often used as two hemispheres. Maps all small circles to circles, which is useful for planetary mapping to preserve the shapes of craters.
المتآصل   Azimuthal منظوري Hipparchos (نشره) 200 ق.م.ح. 200 ق.م. View from an infinite distance.
منظوري رأسي   Azimuthal منظوري ماتياس سوتر (نشره) 1740 View from a finite distance. Can only display less than a hemisphere.
Two-point equidistant   Azimuthal Equidistant Hans Maurer 1919 Two "control points" can be almost arbitrarily chosen. The two straight-line distances from any point on the map to the two control points are correct.
Peirce quincuncial   أخرى Conformal تشارلز ساندرز پيرس 1879
Guyou hemisphere-in-a-square projection   أخرى Conformal Émile Guyou 1887
Adams hemisphere-in-a-square projection   أخرى Conformal أوسكار شرمان آدمز 1925
Lee conformal world on a tetrahedron   Polyhedral Conformal ل. پ. لي 1965 Projects the globe onto a regular tetrahedron. Tessellates.
Authagraph projection Link to file Polyhedral Compromise Hajime Narukawa 1999 Approximately equal-area. Tessellates.
Octant projection   Polyhedral Compromise Leonardo da Vinci 1514 Projects the globe onto eight octants (Reuleaux triangles) with no meridians and no parallels.
Cahill's Butterfly Map   Polyhedral Compromise Bernard Joseph Stanislaus Cahill 1909 Projects the globe onto an octahedron with symmetrical components and contiguous landmasses that may be displayed in various arrangements
Cahill–Keyes projection   Polyhedral Compromise Gene Keyes 1975 Projects the globe onto a truncated octahedron with symmetrical components and contiguous land masses
Waterman butterfly projection   Polyhedral Compromise Steve Waterman 1996 Projects the globe onto a truncated octahedron with symmetrical components and contiguous land masses that may be displayed in various arrangements
Quadrilateralized spherical cube Polyhedral متساوي المساحة F. Kenneth Chan, E. M. O’Neill 1973
Dymaxion map   Polyhedral مرن بكمنستر فولر 1943 يُعرف أيضاً بمنظور فولر.
Myriahedral projections Polyhedral مرن Jarke J. van Wijk 2008 Projects the globe onto a myriahedron: a polyhedron with a very large number of faces.[4][5]
Craig retroazimuthal
= Mecca
  Retroazimuthal مرن James Ireland Craig 1909
Hammer retroazimuthal, front hemisphere   Retroazimuthal إرنتس هامر 1910
Hammer retroazimuthal, back hemisphere   Retroazimuthal إرنست هامر 1910
Littrow   Retroazimuthal Conformal Joseph Johann Littrow 1833 on equatorial aspect it shows a hemisphere except for poles
أرماديلو   أخرى مرن Erwin Raisz 1943
GS50   أخرى Conformal John P. Snyder 1982 Designed specifically to minimize distortion when used to display all 50 U.S. states.
Nicolosi globular   Polyconic[6] Abū Rayḥān al-Bīrūnī; reinvented by Giovanni Battista Nicolosi, 1660.[1]:14 1000ح. 1000
Roussilhe oblique stereographic Henri Roussilhe 1922
Hotine oblique Mercator   اسطواني Conformal M. Rosenmund, J. Laborde, Martin Hotine 1903


المفتاح


الهوامش

  1. ^ أ ب Snyder, John P. (1993). Flattening the earth: two thousand years of map projections. University of Chicago Press. p. 1. ISBN 0-226-76746-9.
  2. ^ Donald Fenna (2006). Cartographic Science: A Compendium of Map Projections, with Derivations. CRC Press. p. 249. ISBN 978-0-8493-8169-0.
  3. ^ Carlos A. Furuti. Conic Projections: Equidistant Conic Projections
  4. ^ Jarke J. van Wijk. "Unfolding the Earth: Myriahedral Projections". [1]
  5. ^ Carlos A. Furuti. "Interrupted Maps: Myriahedral Maps". [2]
  6. ^ "Nicolosi Globular projection"

قراءات إضافية