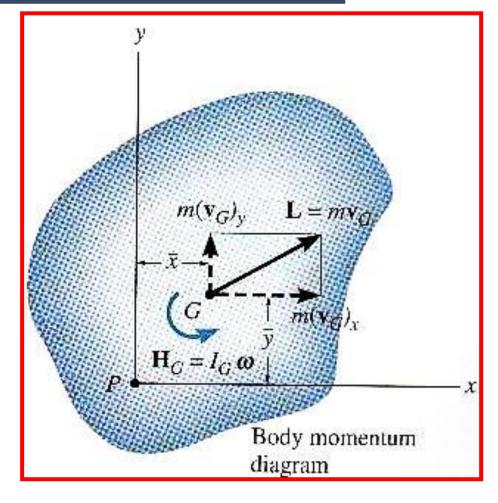


Engineering Mechanics Part 2: Dynamics

Dr. El-Sayed Awad Sayed-Ahmed

elsayed_awad46@yahoo.com

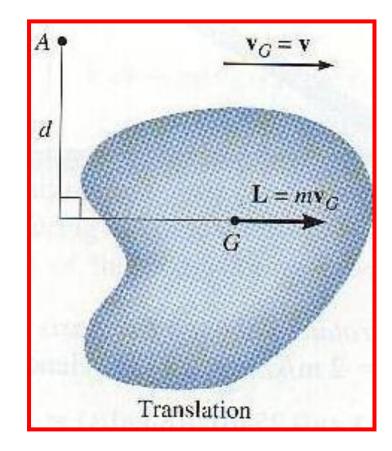

Kinetics of a Rigid Body

Linear Momentum

 $\mathbf{L} = m \mathbf{v}_G$

Angular Momentum

$$\mathbf{H}_{\mathbf{G}} = I_{\mathbf{G}} \boldsymbol{\omega}$$



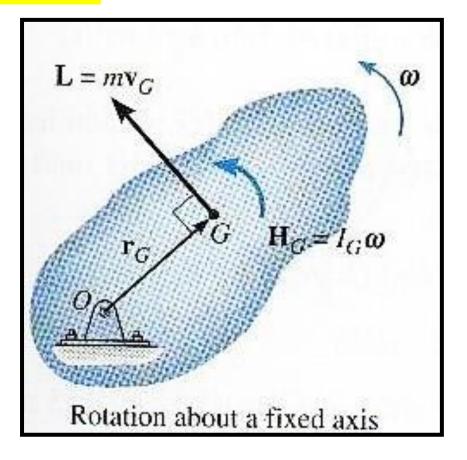
Translation

Translational motion (rectilinear or curvilinear)

$$\omega = 0$$

$$L = mv_G, H_G = 0$$
$$H_A = (d)(mv_G)$$

Rotation about a Fixed Axis

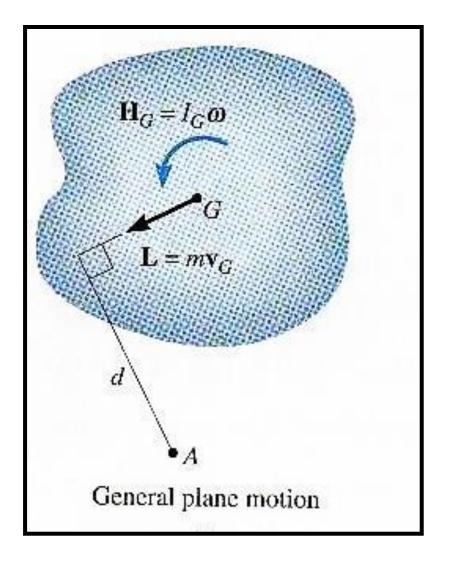

$$L=m v_G$$
 , $H_G=I_G \omega$

$$H_O = I_G \omega + r_G (m v_G)$$

since
$$v_{\underline{G}} = r_{\underline{G}}\omega$$

$$H_O = (I_G + mr_G^2)$$

 ω


$$H_0 = I_0 \omega$$

General Plane Motion

$$L=mv_G$$
 , $H_G=I_G\omega$

$$H_A = I_G \omega + (\mathbf{d})(m v_G)$$

Principle of Linear Impulse and Momentum

$$m(\mathbf{v}_G)_1 + \sum_{t_I}^{t_2} \mathbf{F} dt = m(\mathbf{v}_G)_2$$

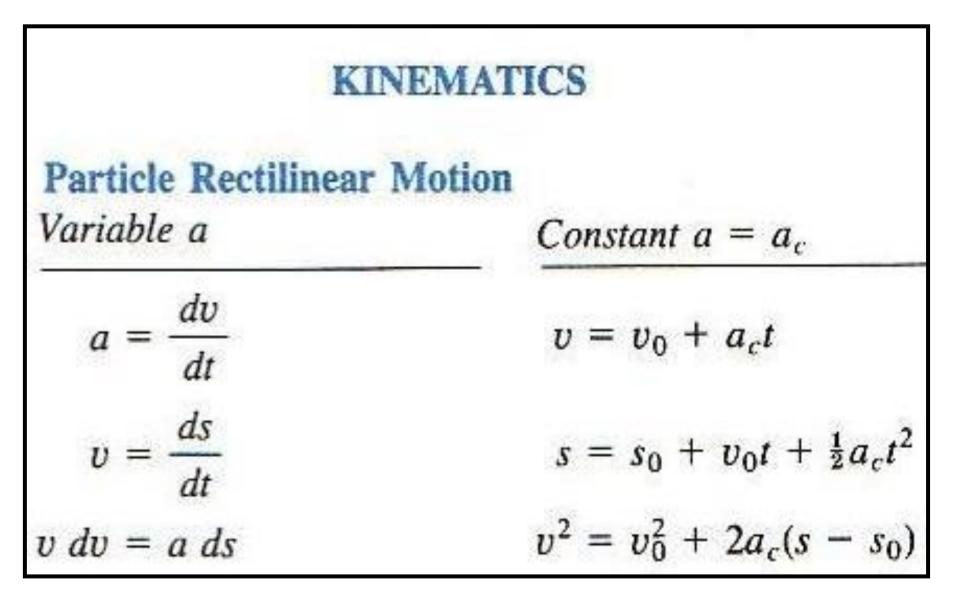
 $(v_G)_1$ and $(v_G)_2$ are the velocity vectors of the center of mass at t_1 and t_2 respectively.

Scalar components for motion along *x* and *y* axes are:

$$m(v_{Gx})_{1} + \sum_{t_{1}}^{t_{2}} F_{x} dt = m(v_{Gx})_{2}$$

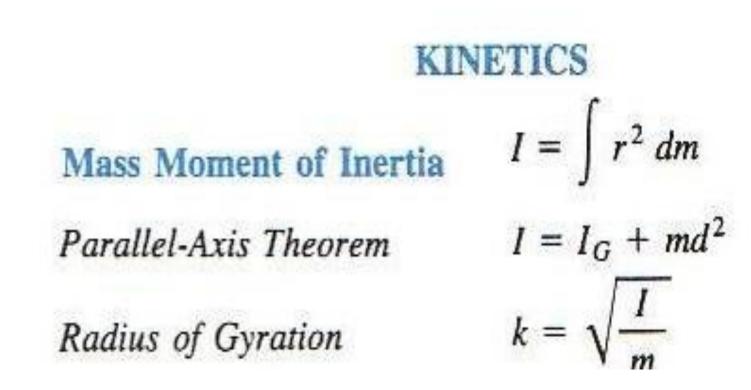
$$m(v_{Gy})_{1} + \sum_{t_{1}}^{t_{2}} F_{y} dt = m(v_{Gy})_{2}$$

Principle of Angular Impulse and Momentum

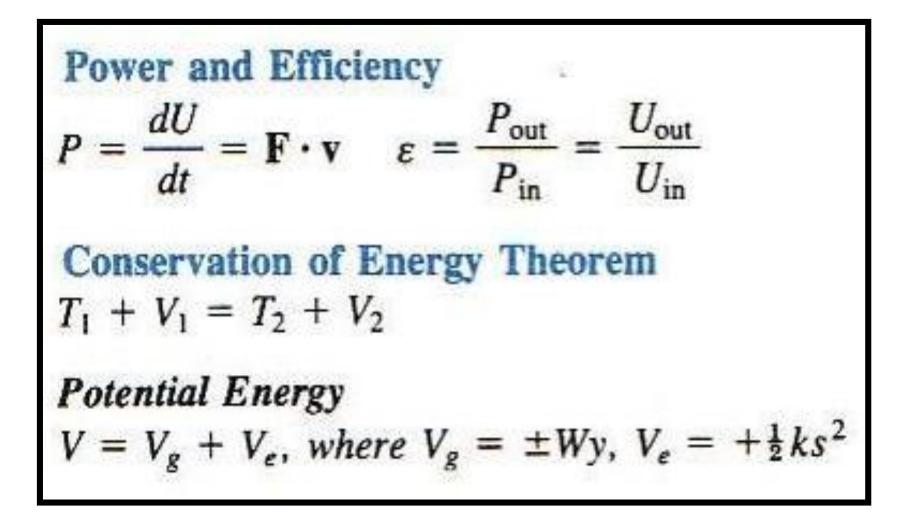

$$I_{O}\omega_{1} + \sum_{t_{I}}^{t_{2}} M_{O}dt = I_{O}\omega_{2}$$

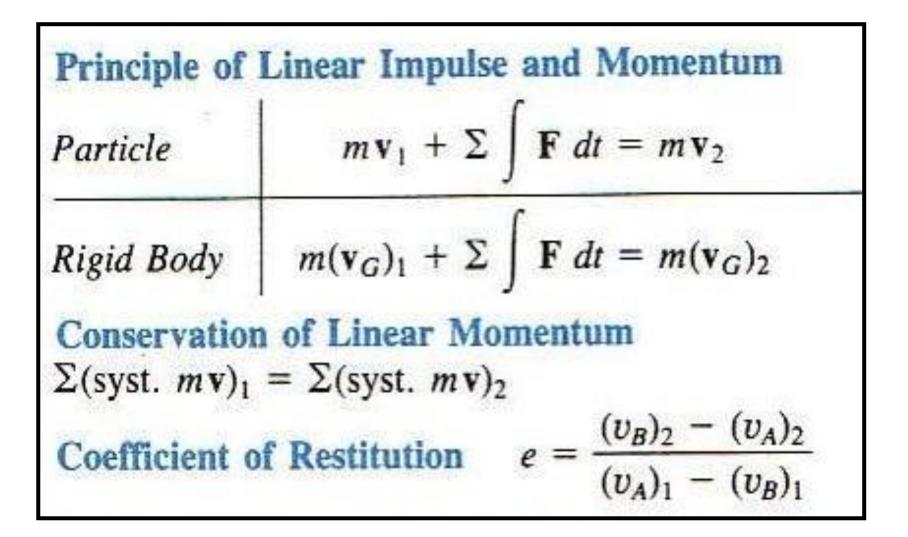
Conservation of Linear Momentum

$$\mathbf{m}(\mathbf{v}_G)_1 = m(\mathbf{v}_G)_2$$


Conservation of Angular Momentum

$$(I_G \omega)_1 = (I_G \omega)_2$$
 and $(I_O \omega)_1 = (I_O \omega)_2$


$v_x = \dot{x}$	$a_x = \ddot{x}$	$v_r = \dot{r}$	$a_r = \ddot{r} - r\dot{\theta}^2$
$v_y = \dot{y}$	$a_y = \ddot{y}$	$v_{\theta} = r\dot{\theta}$	$a_{\theta} = r\ddot{\theta} + 2\dot{r}\dot{\theta}$
$v_z = \dot{z}$	$a_z = \ddot{z}$	$v_z = \dot{z}$	$a_z = \ddot{z}$
$v = \dot{s}$	$a_{t} = \dot{v} = v - \frac{a_{t}}{a_{n}}$ $a_{n} = \frac{v^{2}}{\rho}$	$\frac{dv}{ds} = \left \frac{\left[1 + \left(\frac{dy}{d} \right) \right]}{\frac{d^2 y}{d^2 y}} \right ^2$	$\frac{(dx)^2}{dx^2}$
	Motion		


FUNDAMENTAL EQUATIONS OF DYNAMICS Rigid Body Motion About a Fixed Axis				
$\alpha = \frac{d\omega}{dt}$	$\omega = \omega_0 + \alpha_c t$			
$\omega = \frac{d\theta}{dt}$	$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha_c t^2$			
$\omega d\omega = \alpha d\theta$	$\omega^2 = \omega_0^2 + 2\alpha_c(\theta - \theta_0)$			
For Point P				
$s = \theta r$ $v = \omega r$	$a_t = \alpha r$ $a_n = \omega^2 r$			

Particle	$\Sigma \mathbf{F} = m\mathbf{a}$
Rigid Body	$\Sigma F_x = m(a_G)_x$
(Plane Motion)	$\Sigma F_y = m(a_G)_y$
	$\Sigma M_G = I_G \alpha / \Sigma M_P = \Sigma (M_k)_P$

FUNDAMENTAL EQUATIONS OF DYNAMICS			
Principle of We	ork and Energy		
$T_1 + U_{1-2} = T_2$	2		
Kinetic Energy Particle	$ T = \frac{1}{2}mv^2$		
Rigid Body (Plane Motion)	$T = \frac{1}{2}mv_G^2 + \frac{1}{2}I_G\omega^2$		
Work	ſ		
Variable force	$U_F = \int F \cos \theta ds$		
Constant force	$U_{F_c} = (F_c \cos \theta) \Delta s$		
Weight	$U_W = -W \Delta y$		
Spring	$U_s = -(\frac{1}{2}ks_2^2 - \frac{1}{2}ks_1^2)$		
Couple moment	$U_M = M \Delta \theta$		

Principle of A	ngular Impu	lse and Momentum
Particle	$(\mathbf{H}_{o})_{1} + \Sigma$	$\int \mathbf{M}_O dt = (\mathbf{H}_O)_2,$ where $H_O = (d)(mv)$
Rigid Body (Plane Motion)	$(\mathbf{H}_G)_1 + \Sigma$	$\int \mathbf{M}_G dt = (\mathbf{H}_G)_2,$ where $H_G = I_G \omega$
	$(\mathbf{H}_0)_1 + \Sigma$	$\int \mathbf{M}_O dt = (\mathbf{H}_O)_2,$ where $H_O = I_G \omega + (d)(mv_G)$

Conservation of Angular Momentum $\Sigma(syst. H)_1 = \Sigma(syst. H)_2$