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ABSTRACT

A second-order epsilon method is developed for trajec-

tory optimization problems. The method is applied to sever-

al aircraft and missile performance and air combat maneuver-

ing problems. Heavy emphasis is placed on the realistic

modeling of the flight vehicle's motion and maneuvering

limitations

.

The proposed optimization technique, which is an exten-

sion of Balakrishnan' s epsilon method, uses either the full

second-order Newton-Raphson method or the "modified" Newton-

Raphson method to minimize the epsilon functional. The full

Newton-Raphson method exhibits terminal convergence charac-

teristics superior to the "modified" method, whereas the

"modified" method is generally superior in the initial

stages of a problem. An algorithm is developed which uses

both techniques in a complementary way.

A new penalty functional which has desirable theoretical

properties and exhibits excellent computational behavior is

introduced to treat state and control inequality constraints.
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I. INTRODUCTION

The objective of the research reported on herein is to

develop a method of solving realistic problems in aircraft

and missile performance optimization. Optimization problems

of this type have been the subject of considerable research

[Refs. 1, 2, 3, H , 5> 6, and 7]. The mathematical models

used in these references are the products of many simplifi-

cations and assumptions. Typically, the degree of simplifi-

cation used to render these problems solvable by some opti-

mization technique is such that the solutions obtained are

of limited practical value. This is particularly true in

the modeling of aircraft maneuvering limitations, such as

aerodynamic stall, maximum structural load factor, and

placard Mach number, which require the use of multiple

state and control inequality constraints. Since these

limitations play an extremely important role in maneuvering

flight and air combat, they must be modeled as accurately

as possible. It is, therefore, imperative that the optimi-

zation technique used to solve the problems posed herein

be capable of handling state and control inequality

constraints with relative ease.

Balakrishnan' s epsilon method is an attractive optimiza-

tion technique because of the natural manner in which state

and control inequality constraints are introduced. The

epsilon method is a penalty method in which terms are added





to the performance measure to penalize deviations from the

state equations written as equality constraints. Likewise,

state and control inequality constraints may be treated by

the addition of appropriate penalty terms to the performance

measure. The resulting augmented performance measure is

minimized by an appropriate algorithm for solving unconstrained

optimization problems.

The optimization technique used most successfully in

the literature with the epsilon method is a "modified"

Newton-Raphson technique, hereafter referred to as the MNR

technique. In this method certain second-order terms pre-

sent in the full Newton-Raphson formulation are neglected.

It is argued [Ref. 8] that since computer storage and time

requirements to compute these terms are large, and since

satisfactory results can be obtained over a large class of

problems without the terms, their inclusion is not justified.

For these reasons the full Newton-Raphson formulation, here-

after referred to as the FNR technique, has not been

previously utilized with the epsilon method.

Difficulties were experienced by the author, however,

in applying the MNR technique to problems of the type formu-

lated in this dissertation. The MNR technique was not

effective in problems with state equations and multiple

inequality constraints resulting from a realistic modeling

of the flight vehicle's motion and maneuvering limitations.

For this reason the FNR method was investigated and

found to be feasible in terms of computational storage and





time requirements. The PNR method exhibits terminal con-

vergence characteristics superior to the MNR method although

the MNR method is generally superior in starting a problem.

Problems not solvable by the MNR method alone were solved

by an algorithm which uses both methods in a complementary

way. The power of the FNR technique close to the minimum

can also be used to advantage to obtain a family of optimal

trajectories for different end conditions. The optimal

trajectory for one set of end conditions is used as a first

guess for the optimal trajectory for a neighboring set of

end conditions.

Several simplified problems in aircraft performance

optimization were attempted initially to gain experience

with the epsilon method. In these problems inequality

constraints were treated by using interior penalty func-

tionals of the type recommended by Fiacco, McCormick, and

Jones [Refs. 9 and 10]. Computational results were unsatis-

factory. Difficulties were experienced in keeping the con-

strained state or control completely admissible; a require-

ment for the success of an algorithm with this type of

penalty functional. To alleviate this difficulty a new

penalty functional for inequality constraints is introduced

which exhibits excellent computational behavior. The pro-

posed functional has performed well in computation with up

to eight inequality constraints represented in a single

problem.

8





The thesis is divided into eight sections. In Section

II the epsilon method is presented. The FNR and MNR tech-

niques are derived and discussed. The effectiveness of

the FNR method as opposed to the MNR method is demonstrated

by a scalar example. Finally, the computational experience

gained with both methods in solving realistic performance

problems is presented. In Section III the method of treating

state and control inequality constraints is presented. The

author's experience with interior penalty methods is related

and a new penalty functional is proposed. Computational

experience with the new penalty functional is related and,

finally, several desirable theoretical properties of the

new penalty functional are presented. In Section IV the

algorithm developed for minimizing the epsilon functional

by either the MNR or FNR methods is presented. In Sections

V, VI, and VII three aircraft and missile performance opti-

mization problems are solved. These problems are pertinent

and realistic in their operational applicability. The

three-degree-of-freedom models are the same as those used

in basic aircraft performance analysis. Finally, the

summary and conclusions are presented in Section VIII.





II. THE EPSILON METHOD

This section describes the epsilon method and reviews

the significant contributions of other investigators. The

full Newton-Raphson (FNR) equations for minimizing the aug-

mented performance measure are derived and compared to the

modified Newton-Raphson (MNR) equations published elsewhere

[Refs. 8, 11, and 12].

A. DESCRIPTION OF THE EPSILON METHOD

1. Statement of the Problem

A dynamic system characterized by the nonlinear

state equations

x(t) = f[x(t),u(t),t] (2.1)

is to be controlled to minimize the performance measure

J(x,u) = h[x(T),T] + / g[x(t),u(t),t]dt (2.2)

where x(t) is an n x 1 state vector and u(t) is an I x 1

control vector. State and control inequality constraints

are omitted for the present. In Section III the inclusion

of these constraints is discussed in detail.

2. The Augmented Performance Measure

In the epsilon method as proposed by Balakrishnan

[Refs. 13 and 14], the performance measure (2.2) Is augmented

10





by a penalty functional which involves a weighted integral

of the Euclidean norm of the state equations written as

equality constraints. The augmented performance measure is

T 2
J (x,u,e) = J(x,u) + i f ||x - f(x,u,t)|| dt (2 3)

= J(x,u) + i J (x,u). (2.4)
#v *w t- O -^ <w

The weighting factor e is a positive quantity.

3. Behavior as e -»

As e is reduced, the penalty term J is more heavily
s

weighted, thereby placing greater emphasis on satisfying

the state equations. Balakrishnan [Refs. 13 and 14] and

Taylor [Ref. 11] have shown that under appropriate assump-

tions as e * 0, the epsilon method yields the necessary

conditions of optimality obtained by applying Pontryagin's

minimum principle [Refs. 15 and 16]:

x*(t) = |£ [x*(t),u*(t),t], (2.5)
~ dp ~ ~

P*(t) - - |£ [x*(t),u*(t),t], (2.6)
~ a X ~ ~

and

H[x*(t),u*(t),p*(t),t] < H[x*(t),u(t),p*(t),t] (2.7)
•w >W "V •** •>• **"

where H is the Hamiltonian function defined as

11 > \





H[x(t),u(t),p(t),t] = g[x(t),u(t),t] + p
T
(t)f[x(t),u(t),t],

(2.8)

p(t) is the costate or adjoint vector, u*(t) is an extremal

control vector, and x*(t) is an extremal trajectory. The

assumptions made are that the minimization problem has a

unique solution with x(t) absolutely continuous for each e,

and that f and g are continuously differentiable in x and

u [Ref. 11]. Thus, under appropriate assumptions, it can

be shown that as e -> 0, the epsilon method yields the

results of Pontryagin's minimum principle. That is, if the

optimal control u*(t,e) of equation (2.3) exists for each

e, that solution will approach the optimal control u*(t)

of equation (2.2) as e -* 0.

4. State Equation Integration

It should be noted that the epsilon method is a

non-dynamic method in that the state equations are not

integrated during the minimization process. Once the aug-

mented performance measure has been minimized a check on

the degree of satisfaction of the state equations can be

obtained by integrating the state equations with the optimal

control.

v

B. MINIMIZING THE AUGMENTED PERFORMANCE MEASURE

1. Sequence of Unconstrained Problems

Once the augmented performance measure (2.3) is

formulated, any unconstrained optimization algorithm can

12





be applied to It. A sequence of unconstrained problems

referred to as sub-problems is solved. In each sub-problem

e is held constant and a minimization is performed until

some stopping criterion is satisfied. At this point e is

decreased and a new sub-problem is commenced using the

optimum trajectory found in the previous sub-problem as a

first guess. In this manner a sequence of sub-problems is

solved until, if convergence occurs, some overall stopping

criterion is satisfied.

2. Unknowns and Time Discretization

The states and controls can be approximated by any

orthogonal expansions. The coefficients in these expansions,

along with all free end conditions, become the parameters

or unknowns in the optimization. A functional expansion of

the form (2.9) is convenient because it is continuous and

the period can be selected so that the value of the expansion

is zero at the end points. Since the problems solved involve

time-invariant systems, t is selected as zero and the states
o

and controls are written as

y(t) =

x(t)

u(t)

= y Co + y (T) - y (0)
t + d

T

sin
TTt

T

sin 2Trt

T

sin Mut

(2.9)

where M is the number of harmonics used and

13
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D

D =

• x

D
~u

(2.10)

is an (n + a) x M matrix of coefficients. The derivative

of the expansion of the state vector given in equation (2.9)

with respect to time is required and is given by

x(t) = =-
x(T) - x(0)

T
+ D

~x

7p cos -^p

2tt „„ 2utycos -tjt- (2.11)

The objective is to find the D matrix along with the values

of the free end conditions which minimize equation (2.3)

for a given e. In order to perform this minimization, the

time interval T is divided into (K - 1) sub-intervals each

of duration At so that there are K discrete time points.

The augmented performance measure given by Equation (2.3)

is written as

r T 2 T 2

J (x,u,e) - -
\ f [x,(t)-f,(x,u)] dt + f [x 5 (t)-f P (x,u)] dt

a ~ ~ ^L-'o
j.~~ j q a <l ~ ~

+ .. . + ^[in(t)-fn (x 5 u)]
2

dt]
(2.12).

/' gCx,u] dt + h[x(T),T].

14
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Suppressing the arguments for clarity, equation (2.12) is

expanded to yield

.At KAt

I/O L 1 J
tA ^ 1

'(K-DAt
X X

/-At r2At 9 r KAt

/ (x
p
-f

9)Mt +/ (x„-fp)^dt + ••• + / (iL-fp)
'0 d d JAt

d 2
-TK-lUt * 2

_

dt
(K-l)At

/-At _ /-2At _

+ / (x -f )
2
dt +/ (x. -f )

2
dt +

/0
n n

^At
n n

(2.13)

r KAt

y (Vf
n
)2dt

]

/-At >-2At /-

/ gAt +/ gAt + ••• + /
•'O

y
At -TK

KAt

(K-l)At
gAt + h[x (T),T]

which can be approximated by

a ft

+

f
Xg

1^(0) - ^WO),^)]! ^+
|
Xl (At) - yxCAtJ^CAt)]] ^

2
• +/x

1
([K-l ]At) - f

1
[x([K-l]At),u((K-l)At)]j ^ +

0) - f
2
[x(0),u(0)]j ^+ jxgCAt) - f

2
[x(At),u(At)]j ^

•-+{xp((K-l)At) - fp[x((K-l)At),u((K-l)At)]) ^ + • • +
l ^

2
2 ~ "

2
(2 ' l4)

0) - f
n
[x(0),u(0)]} ^+ |x

n
(At) - f

n
[x(At),u(At)]} ^

• + /^((K-DAt) - f
n
[x((K-l)At),u((K-l)At)]} ^ +

|g[x(0),u(0)]}At +/g[x(At),u(At)]JAt + ...+

jg[x((K-l)At),u((K-l)At)]JAt + h[x(T),T] .'

fc

15





Hence, the augmented performance measure can be written as

J
a

= W;L
2

+ w
2

2
+ ... + w

Q
2

(2.15)

w
T
w (2.16)

where w is a Q x 1 column vector. The first K elements of

w are

w
k

=
[
X;L [(k-l)At] - f

1
[x((k-l)At)

1
u((k-l)At)]}[^] %

,

(2.17)
k = 1,2,..., X,

etc. The form of equation (2.16) is convenient for computer

programming the epsilon method and for the derivation of

the minimization techniques that follow. In minimum time

problems where the performance measure is given by

=/ dt. (2.18)

one element of w of the form

w
Q

= C(K-l)At]% (2.19)

is used to represent equation (2.18). In these type problems

the number of time points K is held constant during the

minimization in order to keep the dimensions of all vectors

and matrices constant and the time interval At is minimized.

16





The values of the states and controls required in

Equation (2.1*J) are obtained by evaluating equations (2.9)

and (2.11) at each time point t = (k - l)At where k = 1,2,

...,K. Written in discrete form equation (2.9) is

y[(K-l)At]-y(0)
y[(k-l)At] = y(0) + - (k-1) + D

K-l

sin

sin

sin

Tr(k-l)
K-l

2ir(k-l)
K-l

MTT(k-l)
K-l

(2.20)

and equation (2.11) is

x[(k-l)At] =
x[(K-l)At]-x(0)

(K-l)At
+ D

~x

IT TT(k-l)
(K-l)At

COS

2tt

(K-l)At
C0S

K-l

2TT(k-l)
K-l

Mtt MTt(k-l)
(K-l)At

COS
K-l

(2.21)

A vector of unknowns c is formed and is given by

c" - (d
1}1 >

d
lj2 > •-> d

ljM >
d
2 ,l'

d
2,2 5 •"' d

2,M' "'

d
n+Jt,l'

dn+A,2 J '•• , d
n+Jl,M'

z
l

5 Z2> "> V At)

(2.22)

17





where d
±

. is the element in the i row and j
th column

of D and z_, z
2 , ..., z

p
represent P free end conditions

some of which occur at t = 0, and others at t = T. Some

of the z ' s correspond to states and others to controls.

The last element, At, is present only if time is to be

minimized. The c vector consists of L elements where

L = (n+Jt) x M + P (2.23)

for all problems except minimum time problems and

L = (n+£) x M + P + 1 (2.24)

for minimum-time problems.

With the states and controls given by equation

(2.20) and the augmented performance measure given by

equation (2.16), the problem has been transformed into a

parameter optimization problem with the unknowns given by

c (2.22).

3. Minimization Techniques

The methods which have received attention in the

literature for finding c* which minimizes the augmented

performance measure given in equation (2.3) are the gradient

method and a "modified" Newton-Raphson method (MNR)

.

The gradient method has been investigated by J.

Taylor [Refs. 11 and 12] and L. Taylor [Ref. 8] with

unsatisfactory results. These investigators report that

18





in non-linear problems the gradient method frequently

obtains false minima and requires considerable computation

time compared to other methods.

An MNR method in which certain second-order terms

present in the full Newton-Raphson (FNR) method are

neglected has enjoyed greater success and requires less

computation time than the gradient method [Refs. 8, 11, and

12]. However, in Ref. 8 difficulties are reported with the

MNR method in non-linear problems. J often begins an

oscillation after two or three iterations and does not

settle to a minimum. In the problems solved herein the

same oscillations have been observed when the MNR algorithm

has been used. Convergence to the minimum, when it does

occur, is typically very slow. Typical performance of the

MNR method is shown in Figure 1.

i-
3

o
c
ra
£
$-
o
«4-

i-
<u
a.

o
a>
4->

c
<D

E
CD

divergence

oscillation

slow convergence

Iteration number

Figure 1

Augmented performance measure vs. iteration
number-MNR method
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The FNR method has not been used by other investi-

gators with the epsilon method because of the increased

computer time for each iteration, the additional storage

space required, and a significantly increased analytic

workload involved in deriving second partial derivatives.

Because of the poor performance of the MNR method on problems

of the type solved herein, the FNR method has been investi-

gated in detail in this work. With careful programming the

computer time for each iteration and storage space required

for the FNR method has been reduced to an extent which makes

the method computationally feasible.

M. The Full and Modified Newton-Raphson Equations

The FNR equations for finding c* are derived here

in a manner which permits the MNR equations derived in the

literature [Refs. 8 and 11] to be obtained by neglecting

a term.

The augmented performance measure is expanded in a

Taylor series including up to second-order terms and is

written as

J (c+Ac) 2 J (c) .+ (VJ) T
ic + ^(Ac)

T
(V

n

2
J )(Ac) (2.25)

where

20





and

V J
c a

3J.

3c T

(2.26)

>\
c

3C-3C2

V
2
J =

c a

80236^^ 3c
2

2

3
2
J.

3c
L
3c,

3
2
J.

3c
T
3Cp

• •

• •

3
2
J

9C
i
aC

L

• • 3
2
J.
a

3Cp3c
T

3
2
J.

3 c,

(2.27)

Solving for the increment of J , we have
3,

AJ = J (c+Ac) - J (c) (2.28)

s (V J )/Ac + %(Ac)
T
(V„

2
J_)_(Ac). (2.29)

21





Applying the necessary condition for a minimum, we have

3(AJ )

JTrAcf- (Va'c + (V
c

J
a }

c
A
2 = 2 <

2 '30)

which when solved for Ac yields

Ac = -(V
2
J )

-1
(V J ) . (2.3Dc a c c a c

If the augmented performance measure is written as

A T
J = ww (2.14)

3. -* *•*

where w is a Q-dimensional column vector, then

Va = V^
= 2(V

c
w)

T
w

and

V
c
2j

a
= 2V

c
[(Vc^

)T
^ ]

= 2[(V
c
w)

T
(V

c
w) + (V

c

2
w)

T
wl

The matrix V w is given by
c~

(2.32)

(2.33)

22





3w. aw. 3w,

3c 3c, 3c n

V c?

3w,

3cl

3w,

3cT

3w,

(2.34)

3w

jTcT.

Q
3w

3~cT

Q
3w

3c;
Q

V w is a three-dimensional array composed of L matrices each
C ~ Q

3
2wi

of dimension Q x L which has as its ijk th element

that is

c ~
"w =

3 w-

3c.

3
2
w,

3c

3 w
Q

3c

3
2
w,

2
3 w.

3c
1
3c

2
3c

1
3c

L

3
2
w, 3

2
w,

3c
1
3c

2
3c,3c

L

3
2
w
Q

3
2
w
Q

3c-,3c
2

3c-,3c
L

3
2
w
Q

3 w
Q

SCpSc, 3c.

2
3 w

Q

3cr 3c.

3
2
w.

3c
2
3c

L

3
2
w.

3c
2
3c

L

3
2
w
Q

3c
2
3c

L

3
2
w
SL

3c
L
3c

2

3c, 3c. '

3c,

(2.35)
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Substituting equations (2.32) and (2.33) into equation (2. 3D,

we have

A
s ^Y^Y's + cV~ )s\^1(ve? )

2

T
»c •

(2 - 36)

This is the full Newton-Raphson equation. The modified

Newton-Raphson equation can be obtained by neglecting the

second term in the inverse in equation (2.36), which yields

A s - -
f
(Y )

c
T(v

c^ ) £j"
1(Y )

s

T

~s
(2,37)

Several comments concerning equations (2.36) and (2.37) are

in order:

a. the term V w given by equation (2.3*0 is a Q x L matrix;

b. the term (V w) (V w) is a symmetric L x L matrix;
m

c. the term (v w) w is an L x 1 vector;

d. the term v 2w given by equation (2.35) is a Q x L x L
c ^

three-dimensional array;

2 T
e. the term (V w) w is a symmetric L x L matrix;

? T ""

f. (V w) is defined as the three-dimensional array

obtained by transposing each individual Q x L matrix

given in equation (2.35);

2 T
g. the result of the operation (V w) w is defined as

an L x L matrix in which the i column is the

product I r— (V w) w .n— (v w)T
[ 3c

i
c~ J

J

24
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5. A Scalar Illustration of the MNR and FNR Methods

The potential importance of the second-order term

neglected in the MNR equations can be illustrated with a

simple scalar problem in function minimization. The Newton-

Raphson equation to minimize a function f(x) takes the well

known form

Ax = -
f^fj- . (2.38)

If

f(x) = w
2
(x) (2.393

which is the form of equation (2.16) with w taken as a

scalar, then

f'(x) = 2w(x) g (x) (2.40)

and

. f"(x) = 2 [g (x)]
2

+ 2w(x) S-5 (x) . (2.41)
dx

The FNR equation (2.36) is

-w(x) g (x)

Ax = g (2,1<2)

d w

[ S <*>] + »<*>
t?

(x)

whereas the MNR equation (2.37) is
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-»<*> & <*>

Ax = (2.13)

" (x)
( 2 214)

dx vx;

Applying equations (2.42) and (2.44) to the function

f.(x) = (x-1)
4

+ 1 (2.45)

in which

w(x) = [(x-1)
4

+ 1]
%

, (2.46)

we obtain

Av = _
3

Ax = - | (x-1) (2.47)

for the FNR algorithm and

Ax = - &=^—±-i (2.48)
2(x-l) 3

for the MNR algorithm. Tables 1 and 2 show the first few

iterations by both methods from an initial guess of x(0) = 3
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MNR Equation (2.48)

Iteration X Ax f(x)

1

2

3
4

3.000
1.937
0.862

190.932

-1.062
-1.076

190.070
145.121

17.000
1.772
1.000
1.329 x 109

Table 1

FNR Equat:Lon (2.47)

Iteration X Ax f(x)

1 3.000 -0.667 17.000
2 2.333 -0.444 4.160

3 1.889 -0.296 1.625
4 1.593 -0.197 1.124

5 1.395 -0.132 1.024
6 1.263 -0.088 1.005

7 1.175 -0.058 1.001
8 1.117 -0.039 1.000

9 1.078 -0.026 1.000

Table 2

Clearly the MNR equation causes x to diverge after an initial

period of convergence while the FNR equation causes x to

approach the minimum.

6. Computation Experience With the FNR and MNR Methods

The performance of the MNR method in the preceding

scalar example is typical of the performance observed by the

author in large problems. However, the FNR equation is also
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not uniformly effective when used exclusively in large

problems. Fortunately, the areas of effectiveness of the

two methods are complementary.

In order to discuss the effectiveness of the two

methods it is convenient to define two areas in the minimiza-

tion process. Initial behavior refers to the behavior of J
a

during the first two or three iterations in a sub-problem.

Terminal behavior refers to the behavior of J after the
a

first two or three iterations within the same sub-problem.

The following behavior has been observed.

a. Initial behavior: The MNR equation outperforms

the FNR equation in this area. The ability of the FNR

equation to minimize J is very sensitive to the starting

value of the unknowns (c). With the values of c far

removed from the optimum, the FNR equation generally causes

J_ to increase rapidly and diverge from the minimum. The
cl

MNR equation on the other hand is relatively insensitive to

the starting c and can usually be counted on to move J
~ a.

toward the minimum for at least one or two iterations.

b. Terminal behavior: As the minimum is approached,

the MNR equation produces the behavior shown in Figure 1.

The FNR equation, however, generally becomes extremely

effective in rapidly finding the minimum.

7. A Combination FNR-MNR Minimization Method

The obvious approach suggested by the previous obser-

vations is to devise an algorithm which minimizes by the MNR

equation initially in a given sub-problem and switches to
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the FNR equation at some appropriate point in the iteration

process. Such an algorithm is presented in Section IV.
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III. AN INEQUALITY CONSTRAINT PENALTY FUNCTIONAL

In this section a new penalty functional is introduced

for state and control inequality constraints of the form

x, < x (t) < x, , 1=1, 2,..., I < n , t e [t o ,T] , (3.1)

u, < u,(t) < u , j=l,2,...,I < I , t e [t ,T] . (3.2)

All state and control inequality constraints encountered in

the problems solved herein are of this type. The difficul-

ties encountered with existing penalty methods which led to

the use of a new functional are related. The new penalty

functional has performed well in computation and is used

exclusively in the solution of the problems presented.

Additionally, several desirable theoretical properties of

the proposed penalty functional are presented.

A. INTERIOR PENALTY METHODS

1. Past Research

In Ref. 10 Jones and McCormick present a number of

theoretical results concerning interior penalty functionals

of the Fiacco-McCormick type [Ref. 9] in conjunction with

the epsilon method. If, for example, a state or control,

denoted by y(t) for generality, is constrained by

y(t) < Y , t e [t ,T] , (3.3)
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a Fiacco-McCormick penalty functional [Ref. 9] of the form

/
T

1 - y(t)
dt (3.H)

is added to the augmented performance measure. The behavior

of the integrand of expression (3.^0 for a fixed time

t e [t ,T] as the positive weighting factor r approaches

is shown in Figure 2.

Figure 2

Fiacco-McCormick penalty function vs. constrained variable
for a fixed time
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If penalty functionals of this type are added to the perform-

ance measure, it can be shown [Ref. 10] that as r approaches

and e approaches 0, the epsllon method yields Pontryagin's

minimum principle. The development parallels and augments

Balakrishnan's work [Refs. 13 and 14] without inequality

constraints. No computational results, however, are

presented.

2 . Computational Experience

A simple problem involving one state variable and

one constrained control was attempted using the epsilon

method and a penalty functional of the form given by

equation (3-^)- The optimal control was on the constraint

boundary. The algorithm was unable to solve the problem

by either the FNR or MNR method from a variety of starting

points. Once the control penetrated the constraint boundary

for a finite time interval, the algorithm failed on the next

iteration. The value of r required to keep the control

admissible for all t e [t ,T] throughout the iteration

process was large, resulting in the augmented performance

measure being dominated by the Fiacco-McCormick penalty

term. As a result, the optimal solution [u*(t,e,r)] to the

augmented problem could not be made to approach the optimal

solution [u*(t)].

B. A NEW PENALTY FUNCTIONAL: COMPUTATIONAL PROPERTIES

1. The Form of the New Penalty Functional

Consider a control or state y(t) which is subject to

a constraint of the form
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y(t) e [yL ,yM ] , t e [t
Q
,T] . (3.5)

A penalty functional of the form

t r2y(t) - yM - y T i2K-T r2y t) - yM
dt (3.6)

where K Is a positive integer is added to the augmented

performance measure. The effect of K can be seen from

Figure 3 which shows the integrand of equation (3-6) as a

function of y(t) for a fixed time t e [t ,T].

increasing K

Figure 3

New penalty function vs. constrained variable for a fixed time

33





A functional of the form given by equation (3.6) is added

to the augmented performance measure for each inequality

constraint of the form given by equations (3.1) and (3'.2).

For I control constraints and I state constraints of thisB S

form the total augmented performance measure for the epsilon

method written for time invariant problems with t = is
o

T
J
a

= J+/ | ||i- f(x,u)||
2

dt

(3.7)

-TV ^c ,-On /'+->_,-,, _,, -,r>v '

J
o l.1-iL

u
i

- u
i T J M xi.- x

i J /JM JL
1=lL \'\ dt

J + I J
s

+ rJ
p (3.8)

The ".two-sided" feature of the penalty functional makes it

especially suited to constraints of the form given by

equations (3.1) and (3-2). In effect, two inequality

constraints are included in one penalty term.

2. Computational Strategy

The power K is increased gradually in numerical

computation in the same manner as e is decreased. Thus,

increasingly refined boundaries to the admissible region

are provided. Both e and K are held constant within a
P

sub-problem and are altered between sub-problems. The

weighting factor r, which is required to provide an overall

weighting among J, J , and J , is held constant throughout
s p

the entire problem.
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Computational results with this penalty functional

have been excellent. Up to eight inequality constraints have

been treated successfully in one problem.

C. THEORETICAL PROPERTIES OP THE NEW PENALTY FUNCTIONAL

1. Introduction

Three desirable properties of the new penalty

functional are presented here. These properties and their

importance are discussed followed by a proof of each

property.

a. Penalty functionals of the form of equation (3.6)

are convex on R
n

where c e Rn is defined by

c
y

T
= Ca

1
,a

2
,...,aM

,y(t ),y(T)] (3-9)

and

y(T)-y(t ) M imr(t-t )

y(t) = y(t ) + = .

°
(t-t ) + Vam sin _ .

° (3-10)
T-t v

o' Z_-» m T-t
o m=j

It is desirable that the augmented performance measure be

convex in the unknowns of the minimization to insure that a

global minimum is attained. If it can be shown that the

inequality constraint penalty functionals (3-6) are convex,

then the addition of any number of these functionals does

not destroy a convexity condition which exists without these

terms, because the sum of convex functionals is also convex.

Indeed, the addition of terms of the type given in equation

(3.6) may create a convexity condition where one does not

exist without the terms.
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b. If for a fixed c given by equation (3-9), the

expansion (3.10) of a constrained state or control is inad-

missible by a finite amount e (e > 0) at t xe(t ,T), its

associated penalty functional (3.6) is unbounded as K •*«*.

This means that as K + », the contribution of a penalty

term (3 .6) to the augmented performance measure for an

inadmissible state or control becomes very large. Therefore

if J„ is being minimized under the condition of ever increas-
el

ing K , the constrained states or controls must at least

approach admissibility.

c. If for a fixed c given by equation (3-9), the

expansion (3.10) of a constrained state or control lies

completely within the admissible region, its associated

penalty functional (3-6) has limit zero as K * °°. The

significance of this result is that penalty terms of the

form given by equation (3-6) will add less and less to the

augmented performance measure as K is increased for states

and controls that are completely admissible.

2. Convexity

Property a discussed above is shown here. The

theorem to be proved follows.

Theorem 1 . If a constrained state or control y(t)

is bounded for t e [t ,T] and is given by

y(T)-y(t ) M rmr(t-t )

y' 1 ! - " !

nx_+
~ Ct-tJ + £am sto T_t (3.10); ) + a z
°

(t-t ) + Ta sin —7=-r-
T-t

Q
o ^ T-t

c

where c e R
n

is defined by
~y
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c
y

T
= [a

1
, a

2
, ..., a

M , y(t
Q ), y(T)] ft , (3-9)

then the penalty functional

Tr2y(t)-yM
-y

LiJjy,Kj = r f —
o

p p t{ L yM
-yL

2K
p dt (3.6)

is convex on R . The constants y„ and y define the

admissible region for y(t) and r is a constant.

Proof . Consider the case of K =1. Equation (3.6)

becomes

J (y,K ) = £
p I [2y(t)-(y +y )]

2
dt. (3-11)

p p (v -v ) t JvyM yI/ o

Let

a yM + yT
d k M -

L
(3.12)

and

A ^r ,, HON
r = o • (3-13)

(yM-yL }

Substituting equations (3-12) and (3-13) into equation (3.11),

we obtain
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1

= r
o / Cy(t) - d]I dt (3.14)

T

- rn f [y
2
(t) - 2y(t)d + d

2
] dt . (3.15)

Substituting the expansion (3.10) into equation (3.15), we

obtain

J = r
P o

/-V y(T)-y(t ) M imr(t-t )-,2

/ {ro)
+

TV <**o>
+ E a^ sin-^
m=l

(3.16)

r y(T)-y(t ) M iror(t-t )

*kV +
T-t

«Hb ) + E a^ sin -^-5-
I o m=l o

d + d
2

l dt.

Equation (3.16) may be written as a quadratic functional

of the form

T

J
p

= r / [i<V~l (t) Sy> + <2y>? (t» + B
]
dt (3 ' 17

-
)

nwhere a(t) e R is

a(t)
T = -2d sin

ir(t-t
Q

) sin2Tr(t-t )

T-t * T-t
o o

sinMTT(t-t )

T-t

t-t t-t

(1 °) °
,u T_t ;,T_t

o o ->

(3.18)

38
t \





Q1
(t) is the outer product given by

Q_(t) = silMl)
- 1

Hd
2

T

(3.19)

and

g = d< (3.20)

At an arbitrary fixed time t*e[t ,T], the integrand of

equation (3.14) is

i2 1
[y(t*)-d] = 2 <2y»Si (t * ) £y

> + <Sy^( fc *)> + P • (3.21)

The first term on the right side of equation (3.21) is

iKvV^Sy) =
[y

(t
<

y(T)-y(t) H nnr(t#-t)n2
J + -ktt—2- (t»-t ) + £ V^-^T-2-

T-t
m=l

(3-22)

Since the terms in the finite expansion of y(t # ) given in

equation (3.10) are linearly independent and analytic, y(t # )

is different from zero almost everywhere and

y (t# ) > , t* e [t
Q
,T], c

y
? 0, (3.23)

Thus,

h <£ .Q^t^c > > 0, t« E [t
Q
,T], c

y
ft 0, (3-2*0
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and Q-j^Ctjj) is, therefore, positive semi-definite, at least,

and positive definite almost everywhere for any c ^0.
~y

Applying Theorem 4.5 of Reference 17 (p. 2?)
1

, the function

given in equation (3-21) is convex on R
n

at t = tr
Next, consider the case where K is any positive

P

integer. In Appendix E the following theorem is proved:

if f(x) is convex on R
n

where x e R
n

and f(x) >_ 0, then

r (x) is convex on R where K is any positive integer.

Since

[y(t») - d]
2

> 0, (3.25)

is convex, it follows immediately that

2K
[y(t,) - d] P (3.26)

is convex on R at a fixed time t x e [t ,T]. Since y(t) is

bounded by assumption for t e [t ,T], it follows that for

Let f be a twice continuously differentiable real-
valued function on an open convex set c in R . Then f is
convex on c if and only if its Hessian matrix

2

Qx
= (q^Cx)). q

1;
,<x) = f^- tev ..., Kn

)

is positive semi-definite for every x e c. A quadratic function

f(x) = % <x,Qx> + <x,a> + a

where Q is a symmetric n x n matrix, is convex on R if and
only if Q is positive semi-definite.

l\0





any finite positive integer K , the expression (3.26) is

bounded for t x e [t ,T]. By Theorem 4, (p. 536) of

Reference 18

T 2K

f [y(t) - d] p dt (3.27)

is convex on R . Hence equation (3.6) is convex on R
n

for

all finite positive integer values of K .

P

3. Behavior of the New Penalty Functional for an
Inadmissible Constrained State or Control

Property b is shown below.

Theorem 2 . Assume y(t) is bounded and given by

equation (3.10) for t e [t ,T] where c ¥ 0, as defined by

equation (3-9). If for a given y(t)

y(t*) > yM
+ e

p
(3-28)

or

y(t*) < yL - e
P

(3,29)

'"Let
I
f
(x) = /f(t,x(t)) dt.

Let T be of finite measure. Let f(t,x) be a finite convex
function of x for each t and a bounded measurable function
of t for eachMx. Then I_ is a well-defined finite convex
function on L°°(T) which Is everywhere continuous with
respect to the1 uniform norm.
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at some time t # e (t ,T), where e > 0, then

Limit J (y,K ) = ~ (3-30)
K -**> p p
P

where

T r2y(t)-y -y -,2K
J (y,K ) = r f ?$—k

o

p dt. (3-6)

In order to prove this theorem the following lemma is

required.

Lemma 1

.

Assume y(t) is bounded by

-<*> < M
1

< y(t) < M
2

< oo (3-31)

and is given by equation (3.10) for t e [t ,T] where

c ^ as defined by equation (3-9). Then, if
~y ~

y(t») > yM + e
p

(3-28)

at some time t« e (t ,T) for any e_ > 0, there exists a
* o p

6 > such that

y(t) > yM
+

Z

-f (3.32)

for the finite time interval

t, - « < t < t, H. (3-33)

H2
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Similarly, if

y(t») < yL
- £p (3.29)

at some time t x e (t ,T) for any e > 0, there exists a

6 > such that

y(t) < yL
- -£ (3.31)

for the finite time interval

tg - 6 £ t £ t #
"+ 6 (3.33)

Proof of the lemma . First, it is necessary to show

that the coefficients in equation (3.10) are bounded; that

is

|aj < M
3

, m = 1,2,. . . ,M (3.35)

where NU > . To this end consider

M

/ ? J?r y(T)-y(t )

a sin
imKt-t )-i2

o
m T-t

m=l o
dt

(3-36)

= <SyS 2 2y >
(3-37)
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where c is given by the definition (3-9). Q ? is a

symmetric matrix given by

Q2

T-t

2(T-t
o

)

IT

2(T-t
Q )

.

T-t
o . .

• •

2(T-t
Q

)

2(T-t
Q

)

2tt

T-t

2(T-t
Q

)

Mi

Mtt

2 (T-t )
o

u

2(T-t
Q

)

2rf

2(T-t
Q )

MlT

M
o

3

*"*<>

2 (T-t )
o

ir

. 2(T-t Q )

2tt

•

•

•

h
2(T-t

Q )

Mtt

M
o

3

M
o

;3

(3.38)

where the terms with 1 are positive if M is odd and negative

if M is even. Since y(t) is bounded by assumption and the

expansion (3.10) is the sum of M + 2 linearly independent

terms, we have

T
< f [y(t)]

2
dt < M

4
t_

(3.39)

where Mm > 0. Using equation (3-37) and inequality (3-39),

we obtain

< <2y'S2Sy> - M
4

(3.40)
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Q
2

is, therefore, positive definite. Using Theorem 2.5

of Reference 15 (p. 52) , we have

< VS2£y> -" "Sy"
2

C3.4D

where X_ > is the smallest eigenvalue of Q ?
and

ll£
y

|| = ^/<c ,c > . Therefore, using the inequality

(3.^0), we obtain

HSyll 1 T * (3 ' 1,2)

Since a , m = 1,2,...,M is a subset of c , it follows that

l

am l 1 M
3

> m=l,2,...,M (3.35)

where M > 0.

Now consider the derivative of equation (3.10)

which is

y(T)-y(t ) M miT(t-t )

*<*> =
T-t

+ 2>m T?f cos -T3F-
2- • (3.43)

o m=l o o

Let Q = (q^j) be a symmetric n x n matrix. Then Q is
positive~definlte if and only if there is a k > such that

<v,Qy> > k||v||
2

for all v in R
n

, where ||v|| = «/<v,v> is the Euclidean
norm of v.
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Taking the absolute value of both sides of equation (3.43)

and applying inequality laws, we obtain

y(T)-y(t ) M m ^ imr(t-t )

|y(t)
|

<
| T_t

°
1
+

| E am g£- cos S
1 (3.44)

o m=l o o

which further simplifies to

y(T)-y(t ) M
|yCt)| 1 1 T.t

°
I
+ E Iam l 5^- • (3.45)

o m=l o

Applying the inequality (3. 35), we obtain

y(T)-y(t ) M,tt M
|y(t)| <

| T_ t 1
+ tV Em (3.46)

o o m=l

< MR (3.47)

for all t e (t ,T) where IVU > 0. The first part of the

lemma as expressed by the inequality (3-32) will now be

shown. Let

6 ^ -g— (3.48)
5

as shown in Figure 4. Consider

y(t) = y(t*) + J y(x) dx . (3-49)
t

»
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y(t)

\ 4

!

1

/ /
P

/
/slope = M

5 /

6 — ^

\ \~"slope

t*

t

Figure 4

Constrained Variable vs. time

Applying inequality (3.^7), we have

y(t) > y(t # ) - M |t, - t| . (3-50)

Consider t in the interval t # - <S < t <_ t x + 6. In this

interval 6 satisfies

6 > |t, - t| . (3-51)

Applying inequality (3-50), we have

y(t) > y(t # ) - M
5

6 (3-52)
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Using the definition (3.48), we obtain

y(t) > y(t # ) - -g. . (3-53)

Applying inequality (3.28), we obtain

y(t) > yM
+ e

p
-
-f (3.54)

or

yet) > yM + -#
,M (3.32)

thus proving the first portion of Lemma 1. The second portion

of the lemma as given by inequality (3-3*0 can be proved in

a similar manner. It is possible at this point to return

to the proof of Theorem 2.

Proof of Theorem 2 . If inequality (3-28) applies,

then by Lemma 1 inequality (3*32) is true. Considering the

integrand of equation (3-6), since yM > y, , it follows that

-2y(t)-y
M
-y

Li2K

yM yL

2(yM
+

2
) yM

-y
L ~i

yM"yL

2K
(3.55)

for t. - i < t < t| + i. Further simplification yields

H8
< \





2K re r,+yM-y 1
F2y(t)-yM

-y
L
n 2K

p >
r^

L yM~yL J " L
yM"y

2K
(3.56

[

> 1 +
yM yLJ

2K
(3.57)

Since the integrand of equation (3.6) is nonnegative for

t e (t »T) and r > 0, it follows that

V y-V = rft [

t r2y(t)-yM
-y

L

O
yM yL

2K
dt (3.6)

t/-d

**' r2y(t)-y
M
-y

L

yM yL

2K
dt . (3-58)

Applying inequality (3-57), we have

t»+6

V y'V 1 r / I"

1 + y~^
P P t/-6 L

yM LJ

2K
dt . (3.59)

The integration of inequality (3-59) yields

J
p
Cy'V 2

r
[

e„ H2K
1 +

yM yL-
26 (3.60)

Since y„ > y T and e > 0, it follows thatML p

Limit
K -»•«>

P

r £~ 1

1 + P

yM~yL-l

n2K
P = CO (3.61)
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and in view of inequality (3.60)

Limit _ / „ v

Kp + « J
p
(y > K

p
)

=
°° * (3-62)

If inequality (3-29) applies, then by Lemma 1,

inequality (3-3 1*) is true. Since yM
> y , it follows that

F

2y(t)-yM-y T i r2(y
T
- -£)-y

'M 'L
yM yL

'

L~ T ;
~
J M"yL

yM~yL
(3.63)

for t*-<5<t<t x + 6. Simplifying, we obtain

2y(t)-yM
-yLl

yM"yL
< - 1 +

yM yLJ
(3.64)

Squaring both sides of inequality (3.64), we have

2y(t)-yM-yL
yM~yL

-.2
-i2

1 +
yM

-y
L

(3.65)

Raising inequality (3-65) to the K th power, we obtain

2y(t)-y
M
-y

L

yM~yL

2K

>-[

e n2K
1 +

yM yLJ
(3-57)

which is identical to inequality (3-57). The remainder of

the proof follows inequality (3. 57) to equation (3.62)

exactly. The theorem is proved for the open interval t e (t ,T)

.

The extension of the theorem to cover the closed interval

t e [t ,T] is not difficult.
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4. Behavior of the New Penalty Functional for an
Admissible Constrained State or Control

Property c above is shown below.

Theorem 3 - Assume y(t) is given by equation (3.10)

for t e [t ,T], If for a given y(t)

yL
+ e

q 1 y(t) 1 yM " e
q

(3 ' 66)

for all t e [t ,T] where e > 0, then

v-" vy'V * ° • (3 - 67)

Proof. From inequality (3-66) it can be seen that

yL
+ £

q 1 yM " £
q

* (3 ' 68)

Since y„ > y,, inequality (3-68) may be rarranged to the form

2e n
1 - —g- > . (3.69)

The inequality (3-69) will become useful shortly.

Starting with inequality (3-66), multiplying through

by 2, and subtracting yM and yL , we obtain

2 <yL
+E

q
)
-yM-yL ± 2y (t) -yM

-yL ± ^n-V"7*"*!, •
(3 - 70)
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Dividing through by the positive quantity yM
- yL , we obtain

2<yL+e )-yM
-y

L
2y(t)-y

M
-y

L 2(yM-e )-yM
-y

L
yM yL yM yL yM~yL

(3.7D

This inequality can be reduced to

1 9-

yM yM J L

r2y(t)-yM
-y

L n

yM"yL

2e.
< 1 -

yM yL
(3-72)

In view of inequality (3.69), inequality (3.72) may be

rewritten as

2y(t)-y
M
-y

L
yM"yL

2e
< 1 -

yM yL
(3-73)

Raising inequality (3-73) to the 2K power, we have

2y(t)-yM
-y

L

yM"yL

2K 2e H2K
1 -

yM"yL
(3.74)

Observing that

i[

2y(t)-yM
-y

L
-

yM yL

2K
P =

2y(t)-yM
-y

L
-

yM"yL

2K
(3-75)

we have from inequality (3.7*0

2y(t)-yM
-y

L

yM"yL

2K 2e
1 -

yM y L-J

2K
(3.76)

for all t e [t ,T]. In view of inequality (3-76), it is

easily seen that
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Tr

/[
2y(t)-y

M
-y

L
-,2K

yM~yL

/- r ^e2e -|2K
P dt .(3-77)

Performing the integration, we have

/
[-2y(t)-yM

-y
L

yM yL

2K
dt <

2e
1 SL

yM yL-

2K
(T-t

o
) .(3.78)

In view of inequality (3«69), and the fact that yM
> y

T
,

it follows that

Limit
K ->-°o

P

2e
1 -

yM yL-

2K
P .= . (3-79)

Observing inequality (3-78), we obtain

Limit
K -«>
P /[

'r
r2y(t)-yM

-y
Ln

yM yL

2K
dt = . (3-80)

The theorem is proved.
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IV. THE ALGORITHM

This section describes the algorithm used for minimizing

the augmented performance measure.

A. GENERAL MINIMIZATION STRATEGY

1. Sequence of Unconstrained Sub-problems

A sequence of unconstrained sub-problems is solved

by the algorithm. In each sub-problem the algorithm mini-

mizes the augmented performance measure for given values

of the weighting factors (e and r) and the inequality con-

straint penalty term power (K ) . After an appropriate

stopping criterion is satisfied, e is reduced, K is

increased, and a new sub-problem is commenced using the

optimal solution to the last sub-problem as a first guess.

This procedure is repeated until enough sub-problems are

completed to meet a second stopping criterion.

The algorithm is programmed to do one sub-problem

on each computer run. The results are stored on an external

storage device between computer runs and are retrieved at

the commencement of the next run (new sub-problem)

.

2. Minimization Strategy

The algorithm minimizes by either the FNR or MNR

method. The user must decide which method to use on each

iteration. This is a matter of experimentation, especially

for the first two or three sub-problems. An effective pro-

cedure is to run the sub-problem once using the MNR equation
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throughout and once using the FNR equation throughout. Prom

these results an effective minimization strategy can generally

be deduced for the sub-problem. Occasionally further exper-

imentation is required. This experimentation points out

the advantages of using separate computer runs for each

sub-problem. Once a sub-problem is completed and the results

stored, the computation does not have to be redone each

time an experimental run is made in the next sub-problem.

B. COMMENCING THE PROBLEM

1. Initial Decisions

Three interrelated decisions must be made to begin

a problem. First, the number of time points K must be chosen.

Second, the number of coefficients M for each state and

control expansion must be chosen. The same number of coeffi-

cients is used for all expansions in a given problem in

this dissertation, but this is not a requirement. From a

theoretical standpoint it Is desirable to use a large number

of coefficients and time points to insure that an adequate

approximation of the optimal control and state trajectory

is obtained, but practically, computer time and storage

requirements limit the number of each. The computational

penalty for using a large number of coefficients is the

more severe of the two as the number of equations in (2.36)

and (2.37) which must be solved is equal to the total number

of coefficients plus the number of free end conditions. The

solution of equation (-2.36) or (2.37) represents a considerable

portion of the overall computer time.
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The third decision Involves the initial values of

e, r, and K . The weighting factor r for the inequality

constraint penalty terms is held constant throughout the

entire problem. A satisfactory value used in all problems

in this dissertation for all inequality constraint penalty

terms is r = 100. An initial value of K which has worked
P

well in all problems is K =4. Larger values of K gener-
P p

ally cause computer overflow in the first sub-problem.

With these values chosen there exists a region of e's for

which the first sub-problem will respond to an appropriate

minimization strategy. This acceptable range of starting

e's is different for each problem but is in the range

10~ 5
< e < 10" 3

for all problems solved herein. Numerical experimentation

is the only method available to determine an acceptable

starting e. There is no theoretical requirement to use

the same value of e for each state equation equality con-

straint term in the augmented performance measure or the

same K in each inequality constraint term, but the use of

different e's and K 's has never been required.
P

2. Initial Guess for the Unknowns

Once the above three initial decisions are made, an

initial guess for the vector of unknowns c is required. The

vector c includes all coefficients and free end conditions.
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All coefficients are set equal to zero initially unless

there is good reason to make a different choice.

C. ITERATION

1. Required Vectors and Matrices

The states and controls are calculated at each time

increment by evaluating the functional expansions. The w

vector defined in (2.15) is calculated using these states

and controls. Next, the gradient matrix (2.34), the aug-

mented performance measure (2.16), the symmetric matrix

T T
CV w) (V w) . and the vector (v w) w are calculated.

c~ c c- c c~ c ~c

At this point the algorithm begins the iteration

process with either the MNR or the FNR method depending on

the value of a flag set by the user (the method selected

is based on the iteration number being performed). If the

MNR method is to be used, equation (2.37) is formed. If

the FNR method is called for, the three-dimensional array

2 T
(2.35) is calculated and the symmetric matrix (V w) w

C *** C *w c

is formed. It is prohibitive to store the entire three-

dimensional array, but a feasible alternative is to multiply

each matrix in this array by w as the matrix is calculated

and store the resulting column vector. Once a matrix in

the three-dimensional array is multiplied by w, it Is no

longer required by the algorithm. The next matrix in the

array Is calculated and stored in the same storage locations

used by the first matrix. Only the symmetric matrix

? T
(V w) w need be stored. The total increase In storage

c ~ c ~c
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requirements of the FNR method over the MNR method using

this computation technique is less than 10 percent in the

problems solved herein. It is also imperative in terms of

computation time to take full advantage of the symmetry of

2 T
the matrix (V w) w . Due to this symmetry it is necessary

c *** c *** c

to calculate only one column of the first matrix in the

array, two columns of the second matrix, and n columns of

the n matrix. By taking advantage of the symmetry the

average time for each FNR iteration is approximately twice

the time for each MNR iteration.

2. Solving the Linear System

At this point equation (2.36) or (2.37) is formed

and must be solved for Ac. This is a linear system of the

form

A x = b (4.1)

and is solved in the algorithm by one of three methods

available to the user. They are:

a. Gauss elimination with improvement by residuals

using total pivoting,

b. Gauss elimination with improvment by residuals

using main diagonal pivoting and a computation technique

which capitalizes on the symmetry of A, and

c. Gauss-Seidel iteration.

In the problems solved herein the number of unknowns

varied from 37 to 7^. In spite of the large number of
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unknowns involved, the elimination methods required less

computation time to solve the linear system than the Gauss-

Seidel iteration method. It was observed for the problems

solved that total pivoting was not required In the elimina-

tion method. Method b, therefore, was the most economical

and effective method for solving the linear system and was

used in all problems. Method c is retained in the event

that the algorithm is used to solve problems with a larger

number of unknowns.

In each solution of equation (4.1) one improvement

is made using residuals. That is, after equation (4.1) is

solved,

A x - b = r (4.2)

is formed. The system

A y = r (4.3)

is solved and the resulting y is subtracted from x to form

the final solution to equation (4.1).

3. Interpolation

Tabular functions of two independent variables are

used extensively in the problems to represent aircraft and

missile parameters accurately. Parabolic interpolation is

used to obtain the functional values in these tables and

the required first and second partial derivatives. The
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derivation of the necessary difference equations for para-

bolic interpolation in two independent variables is presented

in Appendix C.

Excerpts from the tabular data used in the problems

is presented in Appendix B along with graphical representa-

tions of the data. The data represents typical supersonic

aircraft and missile performance parameters and has been

obtained from several sources. Considerable effort was

expended to smooth the data before the tables were constructed

since finite difference methods were used not only for

functional values but also for first and second partial

derivatives

.

4. Stopping Criteria

Once the linear system is solved, a new c vector is

calculated from

c
i+1

= c
1

+ Ac
1

. (4.4)

At this point a stopping criterion is tested. If

|J
i - J

i+1
|

: ST0P1
, (4.5)

1 a a —

the sub-problem is finished. Otherwise the iteration process

is continued. At the completion of the sub-problem the

results are stored off line. The computer run is complete.

To begin a new sub-problem a new computer run is

initiated, recalling the results stored from the last
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sub-problem. Epsilon is decreased. K is increased, and
P *

the minimization strategy is altered by the user as required.

Typically, e is divided by a factor of between two and ten

and K is increased by two or four. That is,

K
i+1 = K

1
+

2

or
4

(4.6)

More ambitious policies usually result in failure of the

algorithm.

Sub-problems are solved until a second stopping

criterion is satisfied. Several criteria are possible to

end the problem. A method used successfully involves

observing

J
s*

+ Jp* (iK7)

and stopping when this sum, which represents the penalty

terms due to the equality and inequality constraints without

weighting factors, ceases to decrease significantly between

sub-problems

.

5. Flow Chart

A flow chart of the algorithm is given in Figure 5

.

6

.

Integration

At the completion of the last sub-problem a check

on the degree. of satisfaction of the state equations is

obtained by comparing the state expansions with the state

trajectory obtained by integrating the state equations with

the control expansions.
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Read constants, flags, initial guess for c, initial conditions,
weighting factors, inequality constraint power,
fixed final conditions, stopping criteria.

Evaluate functional expansions at each time point

Calculate w, V
c
w

Form ww, (v w) w, and A = (v w) (v w)

Calculate V w

i

MNR ? T
Form (v"^ w) w, and

A = A + (
v
c
2
w)

T
w

\

1

Solve for Ac = - A
_1

(V
r
w)

T
w

Calculate new c vector, c
1

= c + Ac

Sub-problem done. Reduce e's and increase K 's

No

Figure 5

Algorithm Flow Chart
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V. A MISSILE INTERCEPT PROBLEM

In this section a short-range missile intercept problem

is solved. An air-to-air missile launched from an attacking

airplane is to intercept a constant-velocity target in

minimum time. The missile is restricted to move in a plane.

The orientation of this plane is defined in three-

dimensional space as the plane containing the position of

the missile at launch, the position of the target at launch,

and the velocity vector of the target. The assumptions

applied to the problem, the coorinate systems used, the

nomenclature, and the derivation of the equations of motion

are presented in Appendix A.

A. PROBLEM FORMULATION

1. State Equations

The state equations derived in Appendix A are

gTh gpSa
2

gpSa
2

gW
M = -rj-±± Th cosa - 2w— M C cosa - ^— M C^sina - -^ sine

e e e e

(5.D

gThM Th sina gpSa gpSa gW cos8

6 = wf -is 2vr-
MC

A
slna +

2TF-
MC

N
cosa - w;—

63

(5.2)

X = aMcose - aM
T
cosY (5.3)

Y = aMsine - aM
T
siny . (5.*0





The states are Mach number M, flight path angle 6, relative

range X, and relative cross-range Y as defined in Figure 40.

The control is angle of attack a.

The normalized missile thrust Th is considered

constant until missile engine burnout tR and zero thereafter.

That is,

Th = 1 , t e [0,t
B ] (5.5)

Th = , t e (t
B
,T] . (5-6)

Other parameters considered constant are

g 32.1725 ft. /sec. 2

Th = 3500 lbs.

W
e

200 lbs.

S 0.35 ft.
2

*B
= 7 sec

.

a = 1077. 8 ft. /sec.

(5.7)

p = 0.001756 slugs/ft. 3

The values of the constants in equations (5-7) are based on

an engagement at 10,000 feet altitude. It is convenient to

group these constants as

gTh
C,
1 aW,

(5.8)
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gpSa
C
2

=
2W— (5.9)

e

C
3

= J- • (5.10)

In addition, the computer solution is aided by normalizing

the states X and Y by defining

A X
x = £ (5.11)

A Y
y =

y (5.12)

where X and y are assigned nominal values of 10,000 feet

With these adjustments the state equations are

p p
M = C-jThcosct - C

2
M C.cosa - C~

2
IVrC

N
sina - C W sine (5-13)

T. , w cose
6 = C

±

in
^
lna

- C
2
MC

A
sina + C

2
MC

N
cosa - 0^ -^ (5-1^)

x = ^ M cose - § M
t
cosy (5.15)

y = y M sine - j M
T
sinY . (5-16)

2. Tabular Functions

The axial and normal force coefficients C. and CM

are given in Appendix B as tabular functions of Mach number

and angle of attack. This data is based on a typical air-to-

air missile.
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3. Performance Measure

The performance measure for this problem is

J = / dt . (5.17)
(T

4. Inequality Constraints

Pour inequality constraints are required. The angle

of attack must satisfy

- f < a < f . (5.18)

From structural considerations the load factor must satisfy

-50 < | (6M) < 50 . (5.19):

5. End Conditions

In order to describe the initial conditions for the

problem it is necessary first to pose the problem in the

(X,Y,Z_) coordinate system shown in Figures 4l and 42 of

Appendix A. The problem chosen for presentation in this

section involves a target in a shallow climb at short range

with a slight altitude disadvantage crossing the attacker's

flight path extension at 90°; i.e.

J^ = 15000 ft. (5-20)

h
T

= -3000 ft. (5.21)

BT
= 90° (5-22)

6
T

= 10° (5.23)
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Following the procedure outlined in Appendix A, the

remaining unknown parameters are

Hp = 0.8 (5.24)

Y = 42.35° (5.25)

VT = 51.526 lbs. (5.26)
C

The initial conditions as computed by this procedure are

M(0) = 0.8 (5-27)

6(0) = -49.573° (5.28)

x(0) = (5.29)

y(0) = . (5.30)

The final conditions as computed by this procedure are

x(T) = 0.9920 (5.3D

y(T) = -1.1645 . (5.32)

Note that x and y are the normalized relative range and

relative cross-range, respectively, as defined by equations

(5-11) and (5-12). The states X and Y in equations (5.11)

and (5.12) are defined as the position of the missile in

the (X,Y) coordinate system shown in Figure 40. At t =

the missile is at the origin of the (X,Y) system, hence

equations (5.29) and (5-30) apply. At t = T the missile

must intercept the target. Since the (X,Y) system becomes

fixed with respect to the target at launch, x(T) and y(T)
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are equal to the normalized coordinates of the target in the

(X,Y) system at launch and are given by equations (A. 93) and

(A. 95).

B. THE EPSILON METHOD FORMULATION

1. The Augmented Performance Measure

Using the penalty functionals described in Section

III for inequality constraints, the augmented performance

measure is

J
*

=

-f
dt

T

+ ly m _ Ojlhcosa + C
2
M2C

A
cosa + CgM^sina + C-W sine] dt

T
i C r • th i

w cose
1 2

+ eJ L
6 "Cl'^2L + C

2
MC

A
Sijla " C

2
MC
N
C0Sa + C

3 ~V~J dt

T 2

+ jJ \x - j Mcose + | Mpcosy] dt

/ T 2

+
IJ [

y ~ 7 ^ ih8 + 7V1^] dt

(5.33)

r T m n2K /- T
r AM -]2K

'.( ft]
p

*= + < [§&]
p *

where e and r are weighting factors and 6 is a constant used

to make minor adjustments in the admissible regions. In all

problems 6 is given a value of 1.03. This adjustment is

applied to all admissible regions of constrained states and
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controls. The power K is limited in computation to approxi-

mately 30 before computer exponent overflow problems develop.

With this value of K it is desirable to adjust all admis-
P

sible regions slightly as can be seen from Figure 6.

r2y-yM
-y

Li
60

Figure 6

Adjusted admissible regions
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The required elements of w are

w
k

=
[«k " C

l
Thcosak

+ C2\
2\coa«* + C

2
M
k
2V ina

*

+ C
3
W
c
Bine

k] [&\
k

, k = 1,2,...,

(5.34)

K

w
K+k

=
[K - °1

Thsina,

T£~ + C
2
M
k
C
A
k
sina

k " C
2
M
k
C
N
k
COSa

k

(5.35)
w cose,
c k"c—

k

]
\LtlH k = 1 2 K

w2K+k
- [xk

- | M
k
cose

k
+ | M

T
cosY

] [^]
%

, k=l,2,...,K (5.36)

w
3K+k

=
[*k - 7 M

k
sln9

k
+ 7 M

T
sinY

] [t"]
%

'
k=1

»
2 »-.-»K (5.37)

w4K+k =
20^1

tt6

K
P (rAt) % IV "" 1 j £. j « « i j 1\ (5.38)

w
5K+k

r aek
M
k

50g6

K
p (rAt) %

, k = 1,2,.. ,,K (5.39)

W
6K+1

= C'CK-l)At] (5. HO)

where

ML = M(t)
k t=(k-l)At

etc.
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2. Functional Expansions

The state and control expansions written In discrete

form are

\ = M
1

+ JS_± (k-1) + £ a
m
sin

mTT

^i » k-l,2,...,K (5. Hi)
m=l

e„-e, m
fir i\

6
k

= 6
l

+ -T^r (k_1) + £ V in
K-i »

k=l,2,...,K (5.12)
m=l

X
k

= X
l

+
-fcT

1 (k"1) + £ cm
Sln m7T

K-l
1)

"
k=l,2,...,K (5.43

m=l

• y^-yn M imr(k-l) . , 9 „ , R y,
yk

= y l
+ "fa

1 (k"1) + E dm
sin K_1 '

k- 1 »
2 >-"' K C5 -

Z,4)

m=l

a
k

= a
l

+
"TEXT (k_1) + ^ em

sln
""'K-I

1 '' k=l,2,...,K. (5.^5)
m= 1

3. Vector of Unknowns

The elements of the vector c are

T
c = w^ »&2» • * • * a

]yi» i»°2 ' ' '
'

' M,c
l*

c2*
'

* * ,CM J

d
1
,d

2
, . .

.
,d
M
,e

1
,e

2
, . .

.
,e
M
,M
K
,e

K
,a

1
,a
K
,At) .

(5.^6)

1. Partial Derivatives of the Tabular Function

The values of C. and C. T
are obtained from the tables

30
A =>

C
Aby parabolic interpolation along with the values of -ttt— , ——

,
a vl 3 ct
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>\ 9
2
CA

9C
N

9C
N >\ *\

* 2 »
' » * i 2 ' » 2 '

3cT 3M3a 3M 8a 3M 3ci

3
2
C
A __

5 > »! »
—-~~~~ * i

~"~"™ t o > i i and
9M

3
2
C
N

A„
a

. The procedure is outlined in Appendix C.

5 . First Partial Derivatives

The first partial derivatives indicated in equation

(2.3*1) are required. These partial derivatives are easily

obtained from equations (5.3*0 thru (5.*J0) by taking the

partials of these expressions with respect to the vector c.

The expressions are too numerous to include. A typical term

is

^ 3w
k

3M* 3W£ 3\
9am~ ^k"

9a
m 9\ 9am ' ^ ^

For 1 < k < K, w, is given by equation (5.3*0 and the partial

derivatives indicated above are

3w

3M

k = |"Atl%
(5i48)

i. L e J

3*, r o
9C

A

3MJ
=

[
2C

2
M
k
C
A
k
COSa

k
+ C

2
M
k
2

3M^ C0Sa
k

+ 2C
2
M
k
C
N
k
slna

k

(5.*»9)

2
w
k 3M.

9C
N

2
1N
k

-
'
— ^][ffk

3M

^-TK^m^^T1 (5.50)
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k _ o-»n nnr(k-l)
9a '

sln
K-l

m
(5.51)

Notice that C. and CM are functions of M. as well as a, .

A
k \ K K

6. Second Partial Derivatives

The second partial derivatives indicated in the three-

dimensional array (2.35) are also required. Again the expres-

sions are too numerous to list. A typical term for 1 < k < K

is

2
3 w

k _ 3
raw,

9V am 9a
*

8a_m -1

(5.52)

3W A
Letting —^ = R

9am
we have

3 w
k _ 3R 9 R

8M
k + 3R_ *\

9V am 9a
* 9% 8a

£
3M

k 3a
£

'

(5.53)

The partial derivatives indicated above are

3R
3 ^k

= (5.5*0

3R_

3M,

8C
A

2C
2
C
A
k
COSa

k
+ * C

2
M
k 3M

k

2
9 C

A
k 2 k— cosa, + C M. ~— cosol

K d K
3M,

K

+ 2C~C.
T
sina, + 4C M

2 N
k

k 2 . _k

2
9C

N
9 C

N

-k wr slna
k

+ c2\ rnr sina
3M,

k

[f]
!̂
sin

mTr(k-l)
K-l

(5.55)
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8M
k &TT gTT (k-l) fr- cC \

9i7
=

(K-l)At
COS

K-l (5 * 56 >

^= sin M^i . ( 5 .57)

C. RESULTS

The problem was solved twice: once using 8 coefficients

for each expansion (problem A) and once using 12 coefficients

for each expansion (problem B), In both cases K = 21 time

points (20 time intervals) were used. The initial guess

for the c vector was: i

all expansion coefficients =

M(T) = 1.4

a(0) = 20° 15O0J
a(T) = 0°

At = 7/20 sec. (T = 7 sec.)

1. Problem A - 8 Coefficients for each Expansion

Pour sub-problems were required to solve the problem.

Table 3 gives the weighting factor values, optimization

strategy, and computer time for each sub-problem. Table 4

gives the components of the minimum augmented performance

measure for each sub-problem where

J
a * J + Fs + rJ

P
(5 ' 59)
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sub-
problem

e R K
P

I* optimization
strategy**

C.P.U.
time

1 1.0 x 10" 5 100 4 8 MMMMMMMM 2'28"

2 0.67 x 10" 5 100 6 6 FFFFFF 3' 38"

3 0.5 x 10" 5 100 8 2 FF 1*54"

k 0.5 x 10" 5 100 32 1 F 1'32"

* number of iterations required
** M - MNR method

F - FNR method

Table 3

Weighting factors, optimization strategy, and C.P.U. time for
missile intercept problem A.

sub-
problem V J*

*
J
s

*
J
P

1 16.95 7.538 0.6853 x lO"
4

0.2554 x 10"1

2 14.52 7.585 0.4626 x 10" 1
*

0.1287 x 10~ 9

3 16.83 7.585 0.4624 x 10" 4
0.4619 x 10" 13

4 I6.83 7.585 0.4624 x 10 0.3691 x 10" 53

Table 4

Components of the minimum augmented performance measure for
missile intercept problem A.
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Figure 7 is a plot of the augmented performance

measure vs. iteration number.
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Augmented performance measure vs. iteration
number for missile intercept problem A
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Iterations performed by the PNR method are indicated by a

solid line. Iterations performed by the MNR equations are

indicated by a broken line. The figure shows several signi-

ficant characteristics:

a. the failure of the FNR method on the first itera-

tion of the problem (the initial guess is too far from

optimum to allow the FNR method to converge);

b. the superior terminal convergence produced by

the FNR method close to the minimum;

c. the oscillatory results produced by the MNR

method as the minimum is approached. After the commencement

of sub-problem 2 as shown in Figure 7, the FNR method is

used exclusively to the end of the problem. For comparison,

sub-problem 2 is commenced with the MNR method and allowed

to run to 23 iterations. At the beginning of sub-problem 3»

J increases slightly and never returns to the minimum value

obtained in sub-problem 2. This is an indication that e has

reached a point where smaller values have little influence

on the reduction of J .

s

Figure 8 is a plot of the performance measure vs.

iteration number. The performance measure (final time)

increases with iteration number. As the algorithm iterates,

At is being increased to reduce J (the term in the augmented
s

performance measure reflecting the degree of non-satisfaction

of the state equations) while insuring that constrained

states and controls are kept within admissible bounds by

reducing or holding down J . With small values of e and
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Sub-problem number
1 3 4

Figure 8

Performance measure vs. iteration number
for missile intercept problem A.

large values of K the end result of minimizing the augmented

performance measure is a control history and state trajectory

which minimizes the time to intercept while satisfying the

state equations and inequality constraints; all to a

reasonable degree of accuracy.
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Figure 9 is a plot of J and J vs. iteration
s p

number.

10

Sub-problem number

1 2 3 4
1

I I I I I I I I I I I I 1 I I I I

4 6 8 10 12 14

Iteration number

16 18

Figure 9

J and J vs. iteration number
s p

for missile intercept problem A.

After K is increased at the beginning of sub-problem 2, the

inequality constraint penalty terms J become very small.

This is because the angle of attack is well within its

admissible region.
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It is evident from Figures 7> 8, and 9 that two

sub-problems are sufficient to obtain a reasonable solution.

The overal stopping criterion

(J
s
*+J

p
V - (J

s
*+J

p
V+1

|

<10" 6
(5.60)

where I is the sub-problem number is satisfied after the

third sub-problem. However, at this point the value of K
p

is 8 which is not large enough to provide desirable

penalty functionals for the inequality constraints. It is

necessary to provide as large a value of K as the computer

will allow for the final sub-problem to insure that the

minimization is not influenced by the inequality constraint

penalty terms when the constrained states and controls are

within their admissible regions. Accordingly, a final sub-

problem is performed with K = 32. The algorithm is able

to handle the increase in K from 8 to 32 in one step only

because no constraint boundaries are active in the solution.

Figure 10 is a plot of the angle of attack expansion

computed at the end of the last sub-problem. The region of

admissible angles of attack is shown.

Figures 11 and 12 are plots of Mach number and

flight path angle vs. time. In each plot two curves are

shown; one is the expansion for the state as computed at the

end of the last sub-problem; the other is the state trajec-

tory obtained by numerically integrating the state equations

with the optimal control expansion.
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Figure 10

Angle of attack vs. time for
missile intercept problem A.
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Figure 11

Mach number vs. time for
missile intercept problem A.
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Figure 12

Flight path angle vs. time for
missile intercept problem A.
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Figure 13 is a plot of relative range X vs. relative

cross-range Y. As before two curves are presented: one

represents the expansions of the states as computed at the

end of the last sub-problem; the other is the state trajec-

tory obtained by numerically integrating the state equations

with the optimal control expansion.

Relative range (ft. x 10 )

10 12

integration

Figure 13

Relative range vs. relative cross-range
for missile intercept problem A.
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Figure 14 is a plot of range X' vs. cross-range Y 1

where both quantities are obtained by transforming the

expansions of the states X and Y obtained at the end of the

last sub-problem from the (X,Y) coordinate system to the

inertial coordinate system (X',Y') fixed at the missile

launch point (Figure *J0).
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Cross-range (ft. x 10 )
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Figure 14

Range vs. cross-range for
missile intercept problem A.

85
i \





Figure 15 is a plot of load factor vs. time where

the load factor is given by

n = - (9 M)
g

(5.61)

and the states used in equation (5.6l) are the state expan-

sions obtained at the end of the last sub-problem.

Figure 15

Load factor vs. time for
missile intercept problem A.
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Although load factor Is not a state but a function of states,

the plot is important because it shows that the load factor

constraints as given by (5.19) are not active.

It might be suspected that the optimal trajectory

is a maximum performance turn limited by a constraint

boundary (angle of attack or load factor) followed by a

straight line path to intercept. This is not the case. The

initial turn rate of the missile is small compared to its

maximum turn rate capability. This is due to the high

induced drag associated with high angle of attack turns

which would reduce the missile's longitudinal acceleration

capability. Also there is no straight line segment to the

trajectory although the turn rate of the missile is very

small at intercept.

The first sub-problem was also solved with an

initial guess for the c vector of:

all expansion coefficients =

M(T) = 2.5
6(T) = 0° (5.62)
a(0) = 10°
a(T) = 0°

At = 8/20 sec. (T = 8 sec.)

The sub-problem reached a minimum of 7.5^4 which compared

favorably with the minimum reached by the first initial

guess given by equations (5.58). This gives an indication

that the minimum attained is the global minimum.
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2. Problem B - 12 Coefficients for each Expansion

Four sub-problems were required to solve this

problem also. Tables 5 and 6 summarize the performance of

the algorithm.

sub-
problem

e r K
P

I* optimization
strategy**

C.P.U.
time

1

2

3

4

1.0 x 10" 5

0.67 x 10" 5

0.5 x 10~ 5

0.5 x 10~ 5

100

100

100

100

4

6

8

32

8

2

2

2

MMMMMMMM

PP

FF

FF

3' 34"

2'20"

2'19"

2120"

* number of iterations required
** M - MNR method

F - FNR method

Table 5

Weighting factors, optimization strategy, and
C.P.U. time for missile intercept problem B.

sub-
problem V J* J *

s
J *

P

1 11.51 7.537 0.2125 x 10~ 4
0.1849 x 10" 1

2 9.69 7.612 0.1385 x 10" 2
*

0.3412 x 10" 8

3 10.65 7.628 0.1513 x 10" 4
0.3474 x 10" 11

4 10.31 7.631 0.1339 x 10
_2j

0.6139 x lO"
43

Table 6

Components of the minimum augmented measure for
missile intercept problem B.
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Figure 16 is a plot of the augmented performance

measure vs. iteration number and corresponds to Figure 7

for problem A.
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Augmented performance measure vs. iteration number
for missile intercept problem B.
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A second failure mode of the MNR method close to the minimum

is shown. The MNR method produces a divergent J in the

second sub-problem.

Figure 17 is a plot of range X' vs. cross-range Y'

obtained in the same manner as in problem A (Figure 14)

.
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-10

Cross-range (ft. x 10 )

12

Figure 17

Range vs. cross-range for
missile intercept problem B.
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A comparison of the tables and figures for problems

A and B show that the optimal control and trajectory have

not been markedly affected by the increase in the number of

coefficients from 8 to 12 for each expansion. It is prohib-

itive in terms of computation time and storage requirements

to increase the number of coefficients further.
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VI. . A CLIMB PERFORMANCE PROBLEM

In this section a climb performance problem is solved.

A supersonic fighter aircraft is to climb from sea level to

high altitude in minimum time.

Plight test experience has shown that to climb to

altitudes above the tropopause in minimum time a supersonic

fighter must execute a maneuver which typically includes:

a. a subsonic climb to an altitude near the

tropopause;

b. a level or near level acceleration to some

supersonic Mach number;

c. a "zoom" climb to the desired altitude trading

kinetic energy for potential energy. This technique has

been used extensively in the past decade for establishing

climb records and in fighter-interceptor tactics to attain

altitudes higher than the aircraft's service ceiling for

short periods of time.

Several factors contribute to the optimality of this

type of maneuver. They are:

a. a fighter's maximum Mach number or "placard"

limit which arises from dynamic pressure and/or thermal

limitations and is a function of altitude;

b. a fighter's transonic drag characteristics;

c. air temperature variation with altitude;

d. air density variation with altitude;

e. turbojet engine maximum thrust variation with

altitude

,
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Optimization techniques were first applied successfully

to this problem by Bryson [Refs. 1 and 2]. The method of

steepest descent was used successfully to predict the type

maneuver described above for a typical supersonic aircraft.

The epsilon method is applied to the problem herein to

demonstrate the method's power, A direct comparison of

methods is not made as the mathematical model used here has

been improved considerably over that used in Reference 2.

A. pr6blem FORMULATION

1. State Equations

The. state equations for this problem derived in

Appendix A are

M = £i£ cosa - | siny g§— aM C
D

(6,1)
e

^ = gTh sina + f^ aMCT . g£osy_
(g>2)

M 2w~
w

L aM

h = ^ sin y . (6.3)
H
L

The states are Mach number M, vertical flight path angle y>

and normalized altitude h. The control Is angle of attack a.

Parameters considered constant are the gravitational constant

g, sea level standard density p , aircraft wing area S,

aircraft weight W , and the altitude of the tropopause under

standard atmospheric conditions H"
L<

These constants are
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g = 32.1725 ft. /sec.
2

Po
= 0.002378 slugs/ft. 3

S - 400 ft.
2

(6.4)

W = 39,000 lbs.

H
L

= 36,089 ft.

The remaining parameters in equations (6.1) thru

(6.3) vary with flight and atmospheric conditions. These

variations are represented in either tabular form or by

empirical relations. These tabular and empirical relations

are critical to the problem as they represent the mathemat-

ical equivalents of the factors a through e listed in the

introduction to this section.

It is convenient to define the constant

A gp S

c"tt •
(6 ' 5)

e

With the definition (6.5) incorporated the state equations

are

M = ^ cosa - § siny - caaM
2
Cn (6.6)

a a D

; . g|h sina + oaoM0L . go^ (6 . ?)

aMh = an siny t (6§8)
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2. Empirical Relations

Empirical relations are used for air density ratio a,

maximum Mach number fi., and the speed of sound a as functions

of normalized altitude h. Air density ratio and normalized

altitude are defined by

= £- (6.9)
Po

and

h = g- (6.10)
H
L

These empirical relations which are discussed in Appendix D

are repeated here for convenience. They are

-c,h -c 9h
a = e + c

3
he d

(6.11)

M
M

= 2.1 - l.le"
2 * 4h

(6-.12)

a = a
Q
(l - c

?
h) , h < 1 (6.13)

= 971 ft. /sec. , h > 1 . (6.14)

where

c
1

= 1.54100 (6.15)

c
2

= 1.80445 (6.16)

c
3

0.4130 (6,17)

c
4

= 0.1331 . (6.18)
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3. Tabular Functions

In situations where parameter variations cannot be

adequately represented by empirical formulas, a table of

values is used. Tables are used for lift and drag coeffi-

cients as functions of Mach number and angle of attack for

a typical supersonic fighter. Excerpts from these tables

are presented in Appendix B.

The thrust Th appearing in equations (6.6) and (6.7)

is normalized maximum thrust as it is assumed that since

the aircraft must climb to altitude in minimum time, its

power plant will always be operated at maximum thrust.

Maximum thrust is normalized with respect to sea level

static maximum thrust ThM and is given by

Th
Th = -JL (6.19)

1
M
o

where

Th
M

= 3^,000 lbs. (6.20)
o

Maximum thrust is given as a tabular function of Mach number

and altitude for the fighter under consideration.

*J. Performance Measure

The performance measure for this problem is

T

J = / dt . (6.21)
J
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5. Inequality Constraints

The following state and control inequality constraints

are imposed:

< M < MM (6.22)

-6° = ct
L

< a < a
M

= 24° . (6,23)

The maximum Mach number M„ constraint represents the

"placard" limit. M„ is a function of altitude and is given

by an empirical relation as discussed in Section VI. 2.

The angle of attack constraint aM is set at an

angle of attack slightly above that for maximum lift coeffi-

cient. The minimum angle of attack a is set slightly below

that for minimum lift coefficient thus simulating aerodynamic

stall.

6. End Conditions

The initial conditions are

M(0) = M = 0.6
o

y(o) =

h(0) = h
Q

= .

C6.24)

(6.25)

(6.26)

The final condition is

h(T ) = h
p

-
60 >°g° ft >

. (6.27)
'L

97





B. THE EPSILON METHOD FORMULATION

1. The Augmented Performance Measure

Using the penalty functional described in Section III

for inequality constraints, the augmented performance measure

is

-fJ*% "

+ - f [m - £^h- cosa + ^ s inY + CaaM
2
C
D ]

dt

kf! [i - if—

]

2

at

(6.28)

*.-jT«-P« * <[^P«

where e and r are weighting factors, 6 is a constant used to

make minor adjustments to the admissible regions, and d is

the midpoint of the admissible angle of attack region; that

is

d = M
,

L
(6.29)
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The required elements of w are

wk'=[\- —~ cosa, + -&- *"* + flV*%J [fF (6,30)

k=l,2, . . .,K

w [ gH^ sina^. gcosy.

K= l j 2 , ... j K

a, M,

w2K+k

(6.3D

=
[\ ~ "T^ SlnYk] [*T"]

%
'

k=l,2,...,K (6.32)

f 2M, IK
w3K+k °

[ MJJ
- 1

"

p (rAt) % , k=l,2,..., K (6.33)

w
4K+k

ak" d

aM" d

K
p (rAt) %

, k=l,2,...,K (6.34)

W
5K+1

= t(K-l)At]% (6.35)

2. Functional Expansions, Unknowns, and Partial
Derivatives

The state and control expansions are of the same

form as the problem in Section V and are not shown. The

elements of the c vector are

T
c = (a, ,a5 | • • . fB.fj.fU-, jDnj » • • >oM , C-. jC 5 , • . >cM ,l

l>
a'2 ; *M»"1*"2 M»

w
l»

w
2' 'M ;

d
1
,d2> . .

.
,dM ,M

K ,YK
,a

1
,a
K
,At)
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where the a 's represent the Mach number expansion coeffi-

cients, the b ' s represent the vertical flight path angle

coefficients, the c 's represent the altitude coefficients,
' m *

and the d ' s represent the angle of attack coefficients,
m

The first and second derivatives of the empirical

relations (6.11) thru (6.14) are required. These expressions

are

r\rt
-C-h -Cph

gg = -
C;Le

x
+ (c

3
-c

2
c
3
h)e (6.37)

A2 ~ -c,h -c«h
2-2. = c/e L

- [(c_-c p c, h)c + c
? c„Je

d
(6.38)

dh x 5 J d d J

^=2.64e- 2 ' 4h
(6.39)

i^ = -6.336e-
2<I,h

(6.40)

86- "a
o
c
7 »

h < 1 .. (6.41)

=
. , h >-l (6.42)

A _

dh
,- = . (6.43)

The first and second partials of the tabular functions

for lift coefficient, drag coefficient, and maximum thrust

with respect to their independent variables and the elements
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of w given by equations (6. 30) thru (6.35) with respect to

c are obtained in the same manner as in the problem in

Section V.

C. RESULTS

Two problems were solved. In problem A the aircraft was

to climb from sea level to 60,000 feet in minimum time.

Problem B encompassed a series of problems. The results of

problem A were used as a first guess for the solution of a

minimum-time-to-climb profile from sea level to 61,000 feet,

which in turn was used as a first guess for a climb to

62,000 feet, etc. In this manner optimal control and state

trajectories were obtained for minimum-time-to-climb profiles

from sea level to altitudes from 60,000 to 70,000 feet in

thousand-foot increments. In both problems 8 coefficients

for each expansion and 4l time points ( 40 time intervals)

were used.

1. Problem A - A Climb from to 60,000 Feet

The initial guess for the c vector was:

all expansion coefficients =

M(T) = 0.9
Y(T) = 45° ,

g nil)

a(0) = 1° tt>.44;

a(T) = 1°

At = 120/40 sec. (T = 2 min.)

Four sub-problems were required to solve the problem.

Tables 7 and 8 summarize the performance of the algorithm.
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sub-
problem

e r K
P

I* optimization
strategy**

C.P.U.

1 0.2 x 10
_/|

100 4 9 FMMMFFFFF 3' 33"

2
-4

0.1 xlO 100 6 9 FMMMMMMFF 3*24"

3 0.67 x 10" 5 100 8 8 MFFFFFFF 3' 38"

4 0.5 x 10" 5 100 32 3 FFF 2'59"

* number of iterations required
** M - MNR method

F - FNR method

Table 7

Weighting factors, optimization strategy, and C.P.U.
time for climb performance problem A.

sub-
problem

J
a*

J* V V
1 422. 5 129.1 0.4496 x 10~2 0.6855

2 442.2 199.3 0.2154 x 10" 2
0.2742

3 489.3 238.6 0.1544 x 10~2 0.1904

4 451.5 258.0 0.9677 x 10" 3 O.8838 x 10'-12

Table 8

Components of the minimum augmented performance measure
for climb performance problem A.

102
1 \





Neither the angle of attack or maximum Mach number

constraints are active in this problem. The largest Mach

number attained in the climb is 1.53 at an altitude of

23,000 feet. Consulting Appendix D, the maximum Mach number

at this altitude is 1.88. However, since both constrained

parameters approach their boundaries, a large value of K

is required to obtain small J contributions to the aug-

mented performance measure.

Figure 18 is a plot of the augmented performance

measure vs. iteration number.
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Figure 18

Augmented performance measure vs. iteration
number for climb performance problem A.
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Iterations performed by the FNR method are indicated by a

solid line. Iterations performed by the MNR method are

indicated by a broken line. As observed in the previous

problem, the FNR method results in excellent terminal

convergence . The MNR method performs well when the c

vector is far from optimum as indicated by relatively large

augmented performance measures. At the commencement of

sub-problem 1 the MNR method fails presumably because the

initial guess for the c vector is too close to optimum.

The FNR method does not reduce the augmented performance

measure but manages to salvage the first iteration. On

iteration number 2 the opposite occurs. The c vector is

too far from optimum for the FNR method to work. The MNR

method comes to the rescue. The same thing occurs at the

beginning of sub-problem 2. In these two sub-problems the

use of both methods in combination has allowed the algorithm

to proceed where the exclusive use of either method by

itself produces a divergent condition from which the

algorithm cannot recover.

Figure 19 is a plot of the performance (final time)

vs. iteration number.

Figures 20, 21, and 22 are plots of the states vs.

time. In each plot two curves are shown: one is the

expansion for the state as computed at the end of the last

sub-problem; the second is the state trajectory obtained by

integrating the state equations with the optimal control

expansion.
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Performance measure vs. iteration number
for climb performance problem A.

105





I.O

.expansion -^^^^

1.5
—

1.2 —

S-
01

-§ 0.9
3

integration

O
2: 0.6

0.3 —

I I •
1

Time (min.)

Figure 20

Mach number vs. time for
climb performance problem A.

106





ou

^60 —
oo expansion flr~

X
•

^40
<D
T3
3
-M
•r-
•->

5 20

s 1

integration

1 1 112 3 4

Time (min.)

Figure 21

Altitude vs. time for
climb performance problem A.

1* 30
01

>Mntegration II \

ai
T3w

20 — X
01
^~
CD
c
a

5 i°
.<o
Q. / / .1
4J // expansion 1 >^

CO
•^ o 1 \ 1 // i i i

1

\ 1

\ 2 // 3 4 »

r— // Time (min.)
<a
o
"13 -10
J-
01

Figure 22

Vertical flight path angle vs.
time for climb performance problem A.
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Close observation of Figures 20, 21, and 22 reveals a

trajectory very similar to that described in the introduction

to this problem. The trajectory begins with a sub-sonic

climb to an altitude of 33,000 feet. The climb angle during

this portion of the climb reaches a maximum of 27 degrees.

At this point an acceleration is performed to a Mach number

of 1.53 with the aircraft in a slight descent. A "zoom"

climb is then performed to the desired altitude of 60,000

feet.

Figure 23 is a plot of the angle of attack expansion

computed at the end of the last sub-problem.
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Figure 23

Angle of attack vs. time
for climb performance problem A.
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Initially, the angle of attack is decreasing corresponding

to the initial acceleration of the aircraft from a starting

Mach number of 0.6. As the aircraft rotates to climb

attitude, the angle of attack increases. As the aircraft

levels off for the supersonic acceleration, the angle of

attack decreases correspondingly. The angle of attack

begins to increase again as the "zoom" climb attitude is

established. A further increase is evident as the aircraft

slows down in the climb until as the final altitude is

approached, the aircraft is near stall. The climb was

completed in 4 minutes and l8vseconds.

Figure 24 is a plot of altitude vs. range where both

quantities are obtained by integration. The scales are not

the same

.

8 12 16 20 24

Range (ft. x 10 4 )

28

Figure 24

Altitude vs. range for
climb performance problem A.
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The problem was also solved with the maximum Mach

number restricted to 1.0 throughout the flight regime to

obtain a comparison of the "zoom" climb technique to a

totally subsonic climb to 60,000 feet. The aircraft was not

able to complete the climb. The altitude of 60,000 feet is

apparently above the service ceiling of the model. After

Jj minutes and 18 seconds, which was the time required to

complete the climb by the "zoom" technique, the aircraft

was passing 43,000 feet and climbing very slowly.

2. Problem B - Optimum Climbs to Altitudes
from 60,000 to 70,000 FeeT

Table 9 depicts the results for each sub-problem as

minimum time-to-climb profiles are generated for final

altitudes of 60,000 to 70,000 feet in thousand-foot increments.

For each sub-problem the results of the previous sub-problem

were used as a first guess for the new trajectory. The

stable behavior of the FNR method near the minimum is respon-

sible for the ability of the algorithm to generate neighboring

optimal trajectories. Thus, in effect, ten problems were

solved with minimum effort by taking advantage of the results

of each problem in turn. If, however, the change in end

conditions is too large, the MNR method may be required to

start the new sub-problem. This is the case in sub-problems

11 thru 14.

Figure 25 is a plot of altitude vs. range where

both quantities are obtained by numerical integration showing

the climb trajectories for several of the final altitudes.
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sub-
problem

number of
iterations
required

optimization
strategy *

final
altitude
(feet)

time to
climb
(J*)

C.P.U.
time

H 3 FPF 60,000 4' 18" 2'59"

5 4 FPPP 61,000 V2V 3'11"

6 5 FFPFF 62,000 k '31'* 3'16"

7 12 FFFFFFFFFFFF 63,000 4 '36" 5'02"

8 4 FFFF 64,000 4»4l" 3'05 n

9 3 MFF 65,000 i|»W 2'52"

10 5 FFFFF 66,000 4'54" 3'29"

11 4 MFFF 67,000 4' 57" 3'04"

12 3 MFF 68,000 5'00" 2 '50"

13 H MFFF 69,000 5'03" 2 '55"

14 H MFFF 70,000 5' 09" 2 '53"

* F - FNR method
M - MNR method

Table 9

Results of climb performance problem B.
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Figure 25

Altitude vs. range for
climb performance problem B.

The climb profiles shown in Figure 25 reveal the following

characteristics

:

a. The sub-sonic climb profiles are identical for

all final altitudes for the initial portion of the climb;

b. as the final altitude increases, the altitude at

which the aircraft levels off for the supersonic acceleration

increases by approximately 15 to 18 percent of the final

altitude;
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c. the aircraft performcs a diving maneuver to

transit the transonic region with the maximum dive angle

(13°) reached in the climb to 60,000 feet;

d. as the final altitude increases, the aircraft

performs the supersonic acceleration at higher altitudes

with less altitude loss in acceleration. The results are

not in agreement with standard practice in which the

accelerations are generally performed in level flight at

the tropopause. The results are in agreement with the

results of Bryson [Ref. 2] which clearly show the dive

associated with transiting the transonic region. Bryson'

s

results were obtained by the method of steepest descent.
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VII. AN AIR COMBAT MANEUVERING PROBLEM

In this section the turning performance of a supersonic

fighter is considered. First, the basic aircraft limitations

on maneuvering flight are reviewed. Second, turning perfor-

mance in the horizontal plane is reviewed from a theoretical

point of view. The "corner" velocity concept familiar to
»

fighter pilots is presented. Third, turning performance in

three-dimensions is discussed. Finally, a three-dimensional

problem is solved in which a supersonic fighter is required

to execute a 180° course reversal in minimum time with the

initial and final altitudes specified.

A. THEORETICAL TURNING PERFORMANCE

1. Aircraft Performance and Maneuvering Limitations

A tactical fighter must be highly maneuverable . An

important consideration in maneuverability is the ability

of the fighter to turn. Two basic performance criteria in

turning performance are:

a. radius of turn, and

b. rate of turn.

In air combat situations it is often desirable to perform

a turn so that the aircraft's radius of turn (curvature) is

minimized or the aircraft's rate of turn is maximized. The

ability of a fighter to minimize radius of turn or maximize

rate of turn is limited by:

11H
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a. maximum thrust,

b. aerodynamic stall, or

c. maximum allowable load factor.

2. Turns in the Horizontal Plane

If an aircraft is restricted to move in a horizontal

plane only, turning performance is easily analyzed. Using

the assumptions given in Appendix A and the added assumption

that v

T sin a << L, (7.1)

equations for lift coefficient, radius of turn, rate of

turn, and the thrust required to maintain level flight at

constant velocity are easily derived and well known. They

are

2W n
CT = —^j- , (7.2)
L pSv

r = __v
( 7<3 )

g(n
2
-l)-*

* -*£*£. (7.4)

and

T = —^ v
2

C
D

. (7.5)
2 cos a
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where

T = thrust,

a = angle of attack,

L = lift,

C = lift coefficient,

W = aircraft weight,
e o»

n = load factor

p = air density,

S = wing area,

v = aircraft velocity,

g = gravitational constant,

C_ = drag coefficient,

R = radius of turn, and

ty
= horizontal flight path angle (heading angle)

.

Figure 26 is a plot of lines of constant thrust, constant

radius of turn, constant rate of turn, and maximum lift

coefficient on velocity-load factor CV-n) diagrams.
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Figure 26

Velocity-Load Factor Diagrams

116
t \





In Figure 26(c) the constant thrust lines indicate the

thrust required to maintain a steady state turn at a specific

load factor and velocity. The corner velocity v is defined

as that velocity at which an aircraft is capable of operating

at maximum lift coefficient C T and maximum structural load
L
M

factor n„ at the same time. This is the velocity which

produces minimum radius of turn and maximum rate of turn as

can be seen from Figures 26(a) and 26(b). The corner

velocity can only be maintained in the steady state if the

aircraft has enough thrust available to allow the maximum

thrust curve to pass above the corner created by the

CT - nM boundary intersection. If sufficient thrust is
L
M

M

not available to allow the corner velocity to be maintained

in the steady state, which is typically the case, the air-

craft must either degrade its turning performance by moving

off the boundary intersection until the maximum thrust curve

is encountered, or sacrifice altitude. In this case the

velocity for maximum rate of turn is larger than the velocity

for minimum radius of. turn.

As can be seen from the previous discussion,

optimization techniques are not required to analyze turns in the

horizontal plane. This arena, however, is an excellent

place to test an optimization technique which is being

considered for use in solving more complicated problems

involving three-dimensional maneuvering. With this in mind,

two problems involving turns in the horizontal plane were

solved by the epsilon method and the answers compared to
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theoretical results. In one problem an aircraft was

required to perform a horizontal turn with minimum radius.

In a second problem the aircraft was required to turn

through a given heading change in minimum time which is

equivalent to maximizing rate of turn. The aircraft was

given a large thrust capability so that the turns were not

thrust limited. The mathematical model used in the problems

is given in Appendix A. The model is an accurate three-

degree-of-freedom model of the aircraft's motion with

maneuvering limitations included. Prom the previous

discussion the aircraft should have performed the turn

in both cases at the corner velocity where

c * pS(Cn tana + C
T )

L DM S L
M

(7.6)

In this equation a is the angle of attack for maximum lift

coefficient and Cn is the drag coefficient for maximum lift

coefficient. The epsilon method solved both problems

successfully. In each case the optimum trajectory involved

a turn at the corner velocity. Thus, the ability of the

second-order epsilon method to handle problems of this type

was demonstrated.

3. Turns in Three Dimensions

The analysis of turning performance in three

dimensions is quite complicated. In this regime modern

optimization techniques are the only method of solving
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meaningful problems. Even optimization techniques are apt

to have a difficult time with three-dimensional maneuvering

problems using realistic models of the aircraft's motion

because of large computer time and storage requirements. In

this section the epsilon method is used to solve an impor-

tant three-dimensional maneuvering problem often encountered

in air combat.

In many air combat situations a fighter pilot is

faced with the requirement to reverse his course as rapidly

as possible. Generally, the pilot has in mind a specific

altitude at which he would like to complete the maneuver

which is dictated by his desire to track an enemy aircraft

or perform some attacking maneuver. With this in mind, the

problem posed for solution by the epsilon method involves a

supersonic fighter which is required to execute a 180°

reversal in minimum time. The aircraft must begin the

maneuver in level flight and recover in level flight at the

entry altitude. The accepted maneuvers used to accomplish

this task developed over years of combat experience are the

high-speed yo-yo and the low-speed yo-yo maneuvers. If the

aircraft begins a reversal at a flight speed higher than

its corner velocity a high-speed yo-yo is called for and

vice-versa. A high speed yo-yo consists of a climbing turn

followed by a descending turn. A low speed yo-yo consists

of a descending turn followed by a climbing turn. If the

aircraft begins a reversal at its corner velocity, a level

turn is called for. The purpose of applying the epsilon
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method to this problem is to either confirm or challenge

the effectiveness of these experimentally developed

maneuvers by the use of an optimization technique. The

assumptions applied to the problem, the coordinate system

and nomenclature used, and the derivation of the equations

of motion are presented in Appendix A.

B. PROBLEM FORMULATION

1. State Equations

The state equations derived in Appendix A are

m = wir Thcosct - f slnT - ffr^ m2 °
d

(7.7)
e e

^gnsincf,
( 8)y a Mcosy

' £ ncos(j) _ g cosy ,
y q)T a M a M \i*yj

h =
fp. siny . (7.10)
H
L

The states are Mach number M, horizontal flight path angle

i|>, vertical flight path angle y, and normalized altitude h.

The controls are bank angle 4>, normalized thrust Th, angle

of attack a, and load factor n.

In addition to the four state equations, an equality

constraint which must be satisfied is

= ~£L Thsina + ^f- M^C
L

- n (7.11)
e e
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This equation is a result of the definition of load factor

n and is derived in Appendix A. It is possible to use

equation (7.11) to eliminate the load factor control from

the state equations, but this is not desirable for two

reasons: first, the resulting state equations would be

further complicated thus increasing the analytic workload

required to compute first and second partial derivatives;

second, the incorporation of the important load factor

inequality constraint would be unnecessarily complicated.

Parameters considered constant for this problem are

the gravitational constant g, aircraft maximum thrust ThM ,

aircraft weight W , speed of sound a, base altitude Hj- , air

density p, and aircraft wing area S. These constants are

g = 32,1725 ft. /sec.
2

Th
M

= 21,000 lbs.

W = 39,000 lbs.
e

a - 1077.8 ft. /sec. (7.12)

H
L

= 10,000 ft.

p = 0.001756 slugs/ft. 3

S = 400 ft.
2

It is convenient to define the constants

c- = f (7.13)
1 a

A gTh
M

c
2 " W a

e

(7.14)

c = gPSa
. (7.15)c

3 2W
w.-io,

e
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oil

A

W
e

C
5

A
pSa

2

2W
e

(7.16)

(7.17)

With these simplifying definitions incorporated the state

equations are

*
?

M = c
2
Thcosa - c-^iny - c-M C

D (7.18)

^= cl^ (7.19)

ncos(j> _ cosy ,
2

.

i c
l M C

l M w.^u;

h = |H siny (7.21)H
L

and the additional equality constraint is

= CjjThsina + c
5
M
2
CL

- n . (7.22)

2. Tabular Functions

Tables are used for lift and drag coefficient as

functions of Mach number and angle of attack for a typical

supersonic fighter. Excerpts from these tables are provided

in Appendix B.
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3. Performance Measure

The performance measure for this problem is

T
-f dt. (7.23)J

k. Inequality Constraints

The controls must satisfy

< Th < 1 (7.24)

i a < aM
= 24° (7.25)

°l n i n
M
=6 '5g's (7.26)

<
<J>

< u . (7.27)

The minimum allowable normalized thrust, angle of attack,

and load factor are approximated by zero as these constraints

are not anticipated to be active. A zero value of the

lower bound simplifies the associated penalty term in the

augmented performance measure. The maximum angle of attack

is fixed at a value slightly higher than the angle of attack

for maximum lift coefficient as given in the tabular data

thus simulating aerodynamic stall. The structural load

factor upper bound is 6.5 g's, a standard value from fighter

aircraft operational limitations. The bank angle constraints
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were required to keep the algorithm from generating bank

angles greater than 180°.

5. End Conditions

The initial conditions are

M(0) = 0.9 (7.28)

*(0) = (7.29)

Y(0) = (7.30)

h(0) = h
Q

= 15,000 ft. (7.3D

The final conditions are

*-(T) = tt (7.32)

Y(T) = (7.33)

h(T) = h
Q

. (7.34)

C. THE EPSILON METHOD FORMULATION

1 . The Augmented Performance Measure

Using the penalty functionals described in Section

III for the inequality constraints, the augmented perform-

ance measure is
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.T

J_ = I dtv
T

+ -y ("m - c
2
Thcosa + c siny + c-M

2
C
D]

2
dt

+ |y Tc^Thsina + c
5
M
2
C
L

- nl
2

dt

(7.35)

•T

Si

where e and r are weighting factors, and 6 is a constant

used to make minor adjustments to the admissible regions.

The required elements of w are

w
k

=
[\ ~ ('2 I\C0S\ + c

i
sin\ + c^k\] [itT »

k=1
'
2

»
• '

'
»K ( 7

'
36 )

= [^- cl^s%][f] %
'

k=1 '
2 K (7<37)
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w

w

2K+k

3K+k

=
[\ ' C

l

a cos 4 cosy

\ \-][~]
%

. k=l,2,...,K (7.38)

[\ -r sin
\] [tf >

k=1^-->K

w
4K+k

w -r^-iIK

5K+k |_"~S
'(rAt)'* , k=l,2,...,K

w6K+k
_ r

2a
k IK

w
7K+k

w
8K+k

M

2
*k -

IT ~ 1

K

'(rAt) 2
, k=l,2,...,K

(rAt)** , k=l,2,...,K

P (rAt) 2
, k=l,2,...,K

(7.39)

=
[
c

i,
T\slna

k
+ c

5\\ ~\] [tP ,k=l,2,...,K (7.40)

(7.4l)

(7.42)

(7.^3)

(7.44)

%
W
9K+1

= [(K-l)Atr (7.45)

2. Functional Expansions, Unknowns, and
Partial Derivatives

The state and control expansions are of the same

form as in previous problems and are not shown. The elements

of the c vector are

T
c = (a, t a. , . . . ,a , b,

,
o , . . . ,b , c, ,

c , . . . ,

c

M , d, ,

d

5 , . . . ,

d

M ,l

l»~2
l

m» 1» 2 m»"l» v'2- 'M»"l»"2 W
e

i

»

e o > ••
•

»

eM»i »*o» • • •» ^m»St

i

So » • •
•

»

Sm>"t »"o » • •

•

»"m»1 , "2 1 *M» 1» 2 j^»&1 »&2 =M» 1» 2-

M
K »4' 1

»<<'K
,Th

1
,Th

K>
a
1
,a

K
,n

1
,n

K
,At)

W-

(7.46)
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where the a ' s represent the Mach number expansion coeffi-

cients, the b 's represent the horizontal flight path

coefficients, the c ' s represent the vertical flight path

angle coefficients, the d ' s represent the altitude coeffi-

cients, the e ' s represent the bank angle coefficients, the

f 's represent the thrust coefficients, the 8L.'s represent

the angle of attack coefficients, and the h 's represent
' m

the load factor coefficients.

The first and second partial derivatives of the

tabular functions for lift coefficient and drag coefficient

with respect to their independent variables and equations

(7.36) thru (7.^5) with respect to the c vector are obtained

in the same manner as in previous problems.

D. RESULTS

Three problems were solved. In problem A the aircraft

must perform the 180° reversal in minimum time starting

from an initial Mach number of 0.9. In problem B the air-

craft must perform the reversal starting from its corner

Mach number which from equation (7.6) is 0.708. In problem

C the aircraft must perform the reversal starting from an

initial Mach number of 0.5. In all problems 8 coefficients

for each expansion and 21 time points (20 time intervals)

are used.

1. Problem A

Since the initial Mach number is above the corner

Mach number, a high-speed yo-yo maneuver is called for by
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accepted tactics. With this in mind an initial guess of

the c vector was made to reflect this type of maneuver.

Accordingly, the following coefficients were given non-zero

initial values:

a
1

= -0.309

c, - 0.524

d, = 0.333
1

(7.^7)
e
1

= 1.047

g1
= 0.262

h
±

= 3.000

The remaining initial values for the c vector were:

remaining expansion coefficients =

M(T) = 0.9
4)(0) = 0°

<f>(T) = 0°

Th(0) = 0.88 (30,000 lbs.)
Th(T) = 0.88 (30,000 lbs.) (7.48)
a(0) = 5°

a(T) = 5°

n(0) = 1.0
n(T) = 1.0

At = 12/20 sec. (T = 12 sec.)

The problem was solved in six sub-problems. It took

17.65 seconds to complete the turn. Figures 27 thru 30

are plots of the control expansions as computed at the end

of the last sub-problem.

From Figure 28 it is seen that the maximum thrust

constraint is active for the first 10 seconds of the turn.

At t k 6 seconds there is a short period in which the

thrust is slightly inadmissible. This is due to the use
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Bank angle vs. time for
turning performance problem A.
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Thrust vs. time for
turning performance problem A.

20

129





1/1

S5
20

s-
cn
(LI

-o 16

-

re 12

M- 8
o
01

c

1
» 1 1

8 12

Time (sec.)

16 20

Figure 29

Angle of attack vs. time
for turning performance problem A.
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Load factor vs. time for
turning performance problem A.
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of the factor 8 = 1.03 in the inequality constraint penalty

terms in equation (7.35) which has the effect of slightly

increasing the size of the admissible region. This is

desirable, however, as the epsilon method generates only an

approximation to the optimal control from which the true

optimal control must be deduced. It is easier to recognize

an optimal control expansion which is on a constraint

boundary with the factor <S included. As shown in Figure 6

in Section V, 6 = 1,03 is the proper choice for a final

K =30. During the last portion of the turn, the aircraft

is operated at the angle of attack for maximum lift coeffi-

cient (approximately 22°). The bank angle and load factor

constraints are not active during the maneuver.

Figures 31 thru 3^ are plots of the states vs. time.

In each plot two curves are shown: one is the expansion for

the states as computed at the end of the last sub-problem;

the second is the state trajectory obtained by numerically

integrating the state equations with the optimal control

expansions. An observation of these plots reveals that a

high-speed yo-yo maneuver is performed although the altitude

excursions are not as large as this author expected. The

optimization procedure settles on a nearly level hard turn

at high load factors, steep bank angles, and maximum thrust

for the majority of the turn. When the maximum thrust

boundary is not active, the aircraft flies at the angle of

attack for maximum lift coefficient.
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Mach number vs. time
for turning performance problem A.
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Figure 32

Horizontal flight path angle vs. time
for turning performance problem A.
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Vertical flight path angle vs. time
for turning performance problem A.

133





rn 16o
X

-o

15

14

expansion

Time (sec.)

integration

20

Figure 3^

Altitude vs. time for
turning performance problem A.

2. Problems B and C

Figures 35, 36, and 37 are plots of cross-range vs.

range, altitude vs. cross-range, and altitude vs. range

obtained by integrating the equations of motion with the

optimal control expansions found in problems A, B, and C.

An observation of Figures 35, 36, and 37 reveals that the

expected maneuvers are performed for each initial Mach

number. In problem B the aircraft performs an essentially

level turn from an initial Mach number equal to its corner

Mach number at this altitude. In problem C the aircraft

performs a low-speed yo-yo maneuver losing a maximum of

800 feet after 90° of turn from an initial Mach number

below its corner Mach number. In problems A and C, however,

the aircraft does not go through as much of an altitude

excursion as anticipated by the author. Since in fighter
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turning performance problems A, B, and C.
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Altitude vs. range for
turning performance problem A, B, and C-
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tactics, however, there are no rules on the amount of

altitude which should be gained or lost in a yo-yo maneuver,

a quantitative evaluation of the results is purely subjec-

tive. The important result is that the optimization tech-

nique did require the aircraft to perform the high-speed

and low-speed yo-yo maneuvers predicted by accepted tactics.

The accepted tactics are, therefore, qualitatively correct.

The optimal times required to complete the turn for

each of the three problems are given in Table 10.

Optimal time
for reversal

problem A

problem B

problem C

17. 6 sec

.

20.8 sec.

24.9 sec.

Table 10
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VIII. SUMMARY AND CONCLUSIONS

A number of realistic problems in aircraft and missile

performance optimization have been solved by the use of a

second-order epsilon method. The mathematical models have

portrayed aircraft and missile dynamics In an accurate

manner with particular emphasis placed on the modeling of

performance and maneuvering limitations.

The state and control inequality constraints generated

by these limitations have been handled by a new computa-

tionally superior penalty functional. Three desirable

theoretical properties of this penalty functional have been

shown.

A full Newton-Raphson method for minimizing the aug-

mented performance measure has been shown to be computation-

ally feasible and superior in certain situations to the

"modified" Newton-Raphson method proposed elsewhere.

The following observations are significant with respect

to the second-order epsilon method.

a. The MNR method is relatively insensitive to the

starting values of the unknowns c. The FNR method diverges

for starting values of c which are far from optimum.

b. Once c is close to optimum, the FNR method

converges rapidly whereas typically the MNR method either

diverges, oscillates, or converges slowly at best.

c. In relatively simple problems the MNR method is

capable of obtaining a solution by itself. In more difficult
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problems such as those solved in this dissertation, a

combination of the two methods is required. Typically, the

most effective procedure involves using the MNR method

initially followed by the FNR method when successive itera-

tions yield "small" improvements in the augmented perform-

ance measure. In other rare cases where the initial guess

for the c vector is close to optimum, the FNR method must

be used initially.

d. The power of the FNR method close to the minimum

can be used to advantage to obtain with minimum effort

optimal control and state trajectories for problems with

neighboring end conditions by using the solution to a basic

problem as a first guess for the new problem.

The solutions to the problems solved have a number of

applications. In the missile intercept problem (Section V)

minimum-time optimal trajectories may be used as a basis for

comparison with the performance of more practical sub-

optimal controllers such as proportional navigation for a

short range air-to-air missile . In the three-dimensional

turn-reversal problem the qualitative optimality of an

experimentally developed air combat maneuver is shown for

the first time. A significant lesson to be learned from

the results of this problem is the' importance of thrust in

comparison to lift coefficient in the maneuvering capability

of a fighter aircraft. Thus, an optimization method of the

type used in this work applied to realistic performance
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problems has application in the evaluation of tradeoffs in

the design of future flight vehicles.
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APPENDIX A

MATHEMATICAL MODELS

In this Appendix the mathematical models used in the

problems are derived. In Section A.l the basic equations

of motion of an aircraft in three dimensions are derived

under appropriate assumptions. This model is used in the

problem solved in Section VII. In Section A. 2 the aircraft

is restricted to move in the horizontal plane only and the

appropriate adjustments are made to the three-dimensional

model. In Section A. 3 the aircraft is restricted to move

in the vertical plane only and the appropriate adjustments

are made to the three-dimensional model. This model is

used in the problem solved in Section VI. In Section A.

4

the mathematical model for the missile intercept problem

solved in Section V is derived.

1. The Mathematical Model for an Aircraft Maneuvering
in Three Dimensions

In this section the basic three-degree-of-freedom

equations of motion of an aircraft are derived. The

assumptions are

a. the earth is flat,

b. the aircraft is a point mass,

c. the mass of the aircraft is a constant,

d. the aircraft is always in balanced flight,

e. the aircraft rolls about its velocity vector,

and f. acceleration due to gravity is a constant.
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The coordinate system and notation are presented below,

Figure 39

Aircraft Coordinate System

Three axis systems. are drawn in Figure 39. They are

a.

b.

(X, Y, H) a fixed inertial axis system;

(x- Y'

c. (x, y, z)

Z 1

) a non-rotating axis system fixed
to the center of mass of the
aircraft;

a rotating axis system fixed to
the center of mass of the aircraft;
the x axis is oriented in the
direction of the aircraft's velocity
vector; the y axis points out the
right wing.
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The attitude of the aircraft is given by four angles as

follows:

a. a rotation \\> in the X'Y' (horizontal) plane;

b. a rotation y in the xZ' (vertical) plane;

c. a rotation
<J>

in the yz plane;

d. a rotation a in the xz plane.

The three angles ty, y s and 4> are the Euler angles (Ref. 19).

The angle a is the angle of attack of the aircraft using

the thrust line as a reference. The remaining notation is

a. forces;

L = lift,
D = drag,
T = thrust,
Th = normalized thrust,
W = gross weight,

b. angles;

a = angle of attack of the thrust line
measured in the xz plane,

ct_ = angle of attack for maximum lift coefficient,

Y = vertical flight path angle measured in the
xZ' plane,

(j>
= bank angle measured in the yz plane,

ty
= horizontal flight path angle measured in

the X'Y' plane,

c. rates;

p = roll rate measured in the yz plane,
q = pitch rate measured in the xz plane,
r = yaw rate measured in the xy plane,
w = angular velocity of the xyz system with

respect to the X'Y'Z 1 system,

d. other parameters;

v = velocity,
m = mass,
g = gravitational constant,
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p = air density,
S = aircraft wing area,
C = lift coefficient,

C
D

= drag coefficient,

H = altitude,
h = normalized altitude,

R = radius of turn,
M = Mach number,
M = Corner Mach number,
c '

a = speed of sound,

v = corner velocity,
c

n = load factor,
e = unit vector (with appropriate subscript

indicating direction),

e. subscripts;

M = maximum value

,

L = minimum value

.

The equations of motion are derived following the

methods used in Reference 19- Starting with Newton's

second law

dv

?
= m df

= m
5v

6t
+ to X V (A.l)

where -r-r- is defined as the time derivative in the xyz system,

The aircraft velocity and acceleration may be written

v = ve (A. 2)

dt
=

I = v
?x

+ v
?x > (A. 3)

where
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v?x
=

6v

IF (a. 4)

and

ve = w x v .

~x ~
(A. 5)

The angular velocity of the xyz system with respect to the

non-rotating frame X'Y'Z 1 is given by

w = Pe + qe + re . (A. 6)

At this point, relations between the angular rates p, q,

and r and the angular rates of change of the Euler angles

are required. These relations are purely trigonometric in

nature and are derived in Reference 19. In matrix notation

they are

P

q

r

1 -siny

cos<t> sin<{) cosy

-sin<{> cos<{) cosy

Y (A. 7)

Substituting equations (A. 7) into equation (A. 6), we obtain

no =
(<J>

- ij)siny)e + (ycos<t> + ij>sin<}> cosy)e
~ ~x ~y

+ (ij>cos<{> cosy - ysin<{>)e .

(A. 8)

145 \





Using equations (A. 8) and (A. 2) the product

w x v = (ij>cos<J> cosy - ysin<J>)ve - (ijjsin<{> cosy + Ycos4>)ve
~ — ~y -

z

(A. 9)

is formed. Isolating thrust and weight components in the

xyz system,

T = Tcosa , (A. 10)

T
y

= , (A. 11)

T = -Tsina , (A. 12)

W" = -Wsiny , (A. 13)
e
x

e

W = W cosy sin<J) , (A.14)
e
y

W = W cosy cosiji , (A. 15)
e
z

e

equation (A.l) may be written in component form as

Tcosa - D - W siny = mv , (A.16)

W cosy sintf) = mv(\|/cos<{) cosy - Ysin<J>) , (A. 17)

W cosy cost)) - Tsina - L = -mv(^sinij) cosy + ycos<i>). (A. 18)

The equations (A.l6) thru (A.l8) are the basic equations of

motion. To apply optimization methods, It is desirable to
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transform these equations into state variable format.

First, lift and drag coefficients are defined by the

expressions

L = C
T
Jgpv

2
S , (A. 19)

D = C^pv^S . (A. 20)

Second, it is convenient to introduce the normalizing

expressions

v = aM , (A. 21)

T = Th
M
Th . (A. 22)

Substituting equations (A. 19) thru (A. 22) into equations

(A.16) thru (A.18) along with the expression

W
e

= mg , (A. 23)

we obtain

3
W

Th
M
Thcosa -%C

D
p(aM)*S - w^siny = -H. aM (A. 24)

W
W cosysintf) = — aM(ipeos(J> cosy - ysin<f>) (A. 25)
e g -

W cosy cos<f> - Th
M
Thsina - %C-.p(aM) S (A. 26)

W
e /

•
\= — aM(iJjsin$ cosy + ycos<{>).
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Solving equations (A. 24) thru (A. 26) for M, i> , and y yields

the state variable format

M = - Thcosa - £ siny - ^^ M
2
Cn (A. 27)

W a
a 2W

e
D

e

1 _
gThM Thsina sin*

,
gpSa

MC
L
sln(t>

,. p|nv W
e
a Mcosy 2W

e
cosy K*.*o)

gTh
• = M Thsina cos^ gpSa _ g_ cosy , .

Y Wa M 2V/
U0

L
C0S(P a M

^A.^y;
e e

In addition the position of the aircraft (center of mass

location) may be required from some fixed reference point.

To this end three additional state equations are

X = aMcosy cos^ , (A. 30)

Y = -aMcosy sinij/ , (A. 3D

H = aMsiny . (A. 32)

It is convenient, also, to define the load factor n as

- TOTAL LIFTING FORCE ,. „,n WEIGHT W'33)

L + Tsina
W
e

(A. 3^)

ThM ~ 2_M Thsina + §^-M 2
C
L

(A. 35)
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With equations (A. 35) incorporated into equations (A. 27)

thru (A. 29) the state equations are

M =
-^-f

Thcosa - fsiny - ^^ M
2
C
D

(A. 36)
e e

• £ nsln$ , ,

w a Mcosy KA.31J

• £ ncosft £ cosy ,

8)
' a M a M

^a.jo;

The mathematical model for the three-dimensional

reversal problem solved in Section VII includes the state

equations (A. 36), (A. 37), (A. 38), and (A. 32). In addition,

equation (A. 35) must be satisfied. This equation is written

in the form

ThM oSa 2
2

= -^4 Thsina + ^_ M
*
c _ n . (A. 39)

e e

The states are Mach number M, horizontal flight path angle

i|>, and vertical flight path angle y. The controls are

bank angle <j>, normalized thrust Th, angle of attack a,

and load factor n. The purpose of introducing load factor

as an independent control through equation (A. 35) vice using

the state equations (A. 27) thru (A. 29) is to simplify the

state equations and the incorporation of the structural load

factor constraint.
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The following Inequality constraints are imposed

on the controls:

< Th < 1 , (A.40)

< a < ar (A. Hi)

i n 1 n
M

• (A. 42)

The lift and drag coefficients are given as tabular

functions of Mach number and angle of attack. Reynold's

number effects are neglected. The parameters considered

constant for the problem in Section VII are the gravitational

constant g, maximum thrust ThM , aircraft gross weight W ,

the speed of sound a, air density p, and wind area S.

2. The Mathematical Model for an Aircraft Maneuvering
in the Horizontal Plane

In this section the state equations (A. 36) thru

(A. 38) are applied to an aircraft restricted to maneuver

in a horizontal plane. The appropriate assumptions are

Y = (A. 43)

Y = (A. 44)

H = H (A. 45)
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Applying equations (A. 43) thru (A. 45) to equation (A. 38),

we obtain

n TT^T • (A. 46)
COS(j>

Substituting equations (A. 43) and (A. 46) into equations

(A. 36) and (A. 37), we may write the state equations as

M = ^TiT Thcosa " BzTL m2
°D » U ' h7)

e e

i =^ • (A. 48)

The mathematical model for the two dimensional

minimum time and minimum radius of turn problems referred

to in Section VII includes the state equations (A. 47) and

(A. 48). In addition, equation (A. 35) must be satisfied.

Using equation (A. 46), equation (A. 35) is written in the

form

Th 2
= -—• Thsina cos* + ^- C

L
M
2
cos4> - 1 . (A. 49)

The states are Mach number M, and horizontal flight path

angle i>. The controls are bank angle 4>, angle of attack a,

and thrust Th. It is possible to eliminate one control by

substituting equation (A. 49) into equation (A. 48). The use

of equation (A. 49) as an additional equality constraint is

preferred, however, because the state equations are simpler
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and the required control inequality constraints are simpler

to incorporate.

The following inequality constraints are imposed on

the controls:

< Th < 1 , (A. 50)

< * < <t>M
= cos' 1

[^] , (A. 51)

1 a 1 a
M

' (A. 52)

The lift and drag coefficients are given as tabular

functions of Mach number and angle of attack. The parameters

considered constant for the problem are the same as those

listed for the three dimensional model described in Section

A.l.

3. The Mathematical Model for an Aircraft
Maneuvering in the Vertical Plane

In this section the state equations (A. 27) thru (A. 29)

are applied to an aircraft restricted to maneuver in the

vertical plane. The appropriate assumptions are

* = (A. 53)

and

i - 0. (A. 54)
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Substituting equations (A. 53) and (A. 5*0 into equations

(A. 28) and (A. 29), we may write the state equations as

M = fl—E Thcosa - § siny - fg^ M
2
C
D

(A. 55)
e e

KTh
•

= ,- M Thsina gpSa
MC _ £ cosy ,

6)Y W a M 2W ' °L a M lA°o;
e e

The mathematical model for the two dimensional climb

performance problem solved in Section VI includes the state

equations (A. 55) and (A. 56) along with state equation (A. 32)

It is convenient, however, to introduce the following

relations into the state equations:

(A. 57)a = _£_
po

Th
ThM
W
e

h
H"
H
L

(A. 58)

(A. 59)

where a = density ratio,

p = standard sea level density

Th = normalized maximum thrust,

H
T

= tropopause altitude,

and h = normalized altitude.
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Substituting equations (A. 57) thru (A. 59) into equations

(A. 55) and (A. 56), we obtain the revised state equations

M = £—. C osa - § sina «§— °M 2
Cn (A.60)

a a 2W D
e

• gTh sina SP o
Sa

MC _ gcosy ,. 6l)y a M 2W
alR/

L aM
<A.t>i;

h = §^ sin y . (A. 62)H
L

The states are Mach number M and vertical flight path

angle y. The control is angle of attack a.

The following inequality constraints are imposed on

the states and controls:

< M < MM (A. 63)

<*min 1 « 1 «M •
( A « 61<)

Thrust (Th) represents normalized maximum thrust for

the problem in Section VI. This is given as a tabular

function of Mach number and altitude. The lift and drag

coefficients are given as tabular functions of Mach number

and angle of attack.

Empirical relations are used for density ratio a,

speed of sound a, and maximum Mach number MM as functions of

altitude. These relations are given in Appendix D.
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The parameters considered constant for the problem

are the gravitational constant g, standard sea level density

p , wing area S, gross weight W , and tropopause altitude

V
JJ . The Mathematical Model for the Missile Intercept Problem

In this section the mathematical model for the missile

intercept problem solved in Section V is derived. An air-

to-air missile launched from an attacking aircraft must

intercept a constant-velocity target. The missile is

restricted to maneuver in a plane. The orientation of this

maneuver plane in three dimensional space is defined at

launch as the plane containing the position of the missile

at launch, the position of the target at launch, and the

velocity vector of the target.

The assumptions applied to the problem include those

presented in Section A.l plus the following:

a. the initial velocity vector of the missile lies in

the maneuver plane,

b. the attacking aircraft is tracking the target at

missile launch so that the missile's initial velocity points

at the target at t = 0,

c. the target moves with constant velocity,

d. components of out of plane forces perpendicular to

the maneuver plane are ignored.
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Figure HO presents a view of the problem in the maneuver

plane.

TGT

Figure 40

Missile Coordinate System
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Four axis systems are drawn in Figure kO . They are:

a. (X',Y') a fixed inertial axis system in the maneuver
plane with the origin at the missile launch
point;

b. (X ,Y) a Newtonian reference system in the maneuver
plane with the origin at the missile launch
point at t = 0; after launch the origin
remains fixed with respect to the target
(it moves with velocity v„ with respect to
the X'Y' system); l

c. (x",y") a non-rotating axis system fixed to the
missile center of mass;

d. (x',y f
) a rotating axis system fixed to the missile

center of mass; the x' axis is oriented in
the direction of the missile's velocity
vector.

The systems X'Y*, XY, and x"y" are oriented in the maneuver

plane so that the axes O'X', OX, and ex" form the intersection

of the maneuver plane and a horizontal plane. These axes are

chosen so that the target's initial X, X', and x" positions

are positive. The axes O'Y', 0Y, and cy" are chosen so that

the component ofmissile weight inthe maneuver plane is acting

in the negative Y', Y, or y" direction. All angles are

positive as they are shown in Figure kO in the counter-

clockwise direction. The remaining notation is:

a. forces;

N = normal aerodynamic force
,

A = axial aerodynamic force,
T = thrust,
Th = normalized thrust,
W = component of missile weight in the maneuver

plane,

b. angles;

a = angle of attack^
6 = missile flight path angle,
Y = target flight path angle,
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c. other quantities;

v = missile velocity,

v™ = target velocity,

M = missile Mach number,

MT = target Mach number,

W = missile gross weight,

C„ = normal force coefficient,

C. = axial force coefficient,

w = angular velocity of the x'y' system with
respect to the x"y" system,

m = missile mass

g = gravitational constant,

S = missile wing area

p = air density,

n = load factor,

a = speed of sound,

The equations of motion are derived following the methods

used in Section A.l. Equations (A.l) thru (A. 5) are

identical. The angular velocity of the x'y' system with

respect to the non-rotating frame x"y" is given by

w = 6 e , . (A. 65)

The product

a) x v = v 6 e
,

(A. 66)

is formed. Summing forces in the x' and y' directions, we

obtain from equation (A.l)
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Tcoscx - Nsina - Acosa - W sine = mv , (A. 67)

Tsina + Ncosa - Asina - W cose = mv 9 . (A. 68)
c

Axial and normal force coefficients are defined by the

expressions

A = C
A I pv

2
S , (A. 69)

and

N = C
N I pv2

S . (A. 70)

Substituting equations (A. 21), (A. 22), and (A. 23) into

equations (A. 69) and (A. 70) and transforming the results

into state variable format, the state equations become

M = ^3 Thcosa - gp Mucosa - §p M^sina - ^ sine , ( A . 71

)

e e e e

'

= ^M Thsinq _ ggSa ggSa _ ^c cose. ,

?2)9 aW M 2W
il0
A
Sina

2W
U0
N
COSa

aW M ' ^.^;
e e e e

Two additional state equations are required to impose end

conditions on the relative positions of the missile and

target in the optimization procedure. They are

X = aMcos6 - aMTcosY
(A. 73)

Y = aMsine - af^siny . (A.7 1*)
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The states are missile Mach number M and missile flight

path angle 8. The control is missile angle of attack a

Normalized thrust is given by

Th = 1 t < t
B

(A. 75)

Th = t > t
B

where tR represents engine burnout. The following inequality

constraints are imposed:

"a
M 1 a 1 a

M (A ' 77)

-n
M 1 | (6M) < n

M
(A. 78)

Equation (A. 78) represents a structural load factor limit.

The axial and normal force coefficients are given as

tabular functions of Mach number and angle of attack.

Parameters considered constant for the problem are the

gravitational constant g, maximum thrust ThM , the speed of

sound a, missile weight W , air density p, missile wing area

S, the Mach number of the target M™, and the flight path

angle of the target y.

In order to properly define the problem, it is necessary

to perform several manipulations in analytic geometry.

First, the three dimensional positions of the missile and

target must be specified at launch. Second, the velocity
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vector of the target and the Mach number of the missile at

launch must be specified. Once this is done it is necessary

to:

.a. identify the maneuver plane,

b. identify the XY coordinate system,

c. calculate the target coordinates in that system,

d. calculate the target flight path angle y> the initial

missile flight path angle 0(0), and the component of the

missile weight acting in the maneuver plane W . The

optimization procedure can then be commenced.

To accomplish these calculations an initial coordinate

system is established in which the problem can be easily

visualized. The origin is situated at the missile. The OX

axis is positioned in the horizontal plane. The 0Y axis is

positioned in the horizontal plane such that the target has

no Y' coordinate . The 0Z_ axis is positioned in the vertical

plane such that a target which has an altitude advantage

over the missile has a positive Z_ component. This coordinate

system is shown in figures 4l and 42. The angles 6T and &T

are defined as shown above. The following relations may be

written:

a = R
T
i + h

T
k (A. 79)

M
T

= m
x
,i + myl j + m

z
,k (A.80)

m
t

tane^ = -£' (A. 81)
1 m

x'
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•

s*
/V

a

TGT \

h
T

^X^n •

measured in the
vertical plane
containing M

T

«T

Figure ^1

M

Y

*T

Figure k2

Initial Missile Coordinate System

162 < \





m
,

tanB = _l_ . (A. 82)
m_.

With the problem defined in the coordinate system

shown in Figures 4l and 42 it is now necessary to transfer

the problem to the coordinate system used in the optimization

procedure. That is, it is necessary to identify the maneuver

plane and the XY coordinate system. To this end, a vector

normal to the maneuver plane is

N = a x M
T

(A. 83)

= -h
T
m
y
,i + (h

T
m
x!

-R
T
m
z , )j + Ityryk . (A. 84)

To establish the X axis a vector is required which is in

both the maneuver plane and a horizontal plane. Such a

vector is

X = N x k (A. 85)

= (h
T
mxt -RT

m
z ,

)i + tyn ,j . (A. 86)

To establish the Y axis a vector is required which is in

the maneuver plane and perpendicular to the X axis. Such

a vector is
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Y = N x X

-R
T
h
T
m
h , 1 + R

T
m
y

, (hT
m
x

, -R
T
m
z

, )

j

2 2 2=[h
T

m , +(h
T
m
x
,-R

T
m
z
,) ]k .

(A. 87)

(A. 88)

The angle $ between the maneuver plane and a horizontal

plane is required and is given by

cos<{>

N • k

jN| |k|
(A. 89)

R
T
my'

C(hT
m ) + (h

T
m
x
,-R

T
m
z
,)" + (R

T
m ,) 3

(A. 90)

The missile weight component in the maneuver plane W may

be found from

W = w sin<f>
c e y (A. 9D

This is shown graphically in Figure 43

maneuver plane

horizontal plane

Figure 43

Missile Weight Component
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The initial target coordinates are

x
T
(o) = PROJ

x
a

|

R
T
(h

T
m
x
,-R

T
m
z

,

)

[(h
T
mxl -RTmzt )

2
+ (h

T
m
y
,)

2 ]^
(A. 93)

Y
T (0) ±PROJ„a

(A. 95)

= +

2 2 3 2 2-R
T hrpm , -hT m

y
, -h

T
(h
T
m
x
,-R

T
m
zt )

The sign of Y„(0) is resolved by

if h
T _> , Y

T
is positive;

if h~ < , Y
T

is negative.

The initial missile flight path angle 9(0) is

tane(0) =
Y
T (0)

J4X0T
(A. 96)

by assumption b at the beginning of this section. Before

proceeding it is necessary to insure that the X and Y

vectors given in equations (A. 86) and (A. 88) have the
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correct sense. This may be checked by observing the sign

of PROJYa which should be positive and the sign of PROJvaA— X m

which should be positive if hT > or negative if hT < 0.

After the senses of these vectors have been checked and

altered as required, the target flight path angle y may be

calculated by

cosy =
"— • (A. 97)

|M
|
|X|

The possible range of y is

-it < y < it . (A. 98)

If cosy is positive, then

- \ < y < J . (A. 99)

If cosy is negative, then

| < Y < tt or -ir <_ y < - | . (A. 100)

To find which inequality applies in (A. 100) the quantity

k = ~ X " (A. 101)

lSj.Mil

is formed. If k is positive, then

< y < u • (A. 102)
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If k is negative, then

-it < y < . (A. 103)

This logic completes the set up of the problem in the

maneuver plane.
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APPENDIX B

TABULAR FUNCTIONS

In this Appendix the tabular functions used in the

problems are presented.

1. Three Dimensional Plots

Three dimensional plots of all tabular functions are

presented here. Figure 44 gives the lift coefficient C
y

as

a function of Mach number M and angle of attack a for the

the supersonic fighter aircraft used in the aircraft

problems. Figure 45 gives the drag coefficient C~ as a

function of Mach number M and angle of attack a for the same

fighter. Figure 46 gives normalized maximum thrust Th as a

function of Mach number M and altitude H for the supersonic

aircraft performing the minimum-time climb in the problem in

Section VI. Figure 47 gives the normal force coefficient CN

as a function of Mach number M and angle of attack a for the

air-to-air missile used in the problem in Section V. Figure

48 gives the axial force coefficient C. for this missile.

2. Tables

Following each plot a condensed version of the table used

in the computation is presented.
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Figure kH

C
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= f(M,a)
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Figure 45
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Figure 46

Th = f (M,H)
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APPENDIX C

INTERPOLATION

In the optimization problems solved herein the aero-

dynamic data is given in tabular form. The dependent

variable D is given as a function of two independent

variables M and a in all cases. Excerpts from the tables

used in computation are presented in Appendix B.
2 2

3D 3D 3D 3DFor a given M and a quantities D, -ttt , ~— , —» ,
—x ,

3M 3a
2

3 D
and .„- are required by the optimization algorithm.

Parabolic interpolation is used to obtain these quantities.

In this Appendix parabolic interpolation for two independent

variables is derived.

1. Parabolic Interpolation in the Plane

To apply parabolic interpolation to a tabular function

of two independent variables the nearest point in the

tables to the given point (M,a) must first be found. It is

assumed that the tabular data is given at constant intervals

AM and Aa in the independent variables. The nearest point

given in the tables and the surrounding eight points are

required in the interpolation and are shown in Figure 49.

The parameters 6 and <j> locate the point (M,cx) from the

nearest tabular point (M ,a ). If (M ,a ) is the nearest* s* s s' s

point then

| < 4> < |
(c.i)

189





(Ms-rV

(M
s .ra

)

< Ms'
a
s+

Aa

JL

) (M
s
,o

s
)

<MS-Wl> <
Ms'V!

<{)Aa

t (M,a)

6AM

AM"

)

(M
s+rVi }

< M
s+r a

s
)

<\n-Vi>
M

Figure 4

9

and

*!•!* (C.2)

The inequalities (C.l) and (C.2) hold unless the nearest

point (M ,a ) is on a border of the table. In this case
5 S

(M , a ) is chosen one point in from the border. The
s s

parameters 9 and then satisfy

- 1 <
<J)

< 1 (C.3)

and

- 1 < 6 < 1 (C.I)
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Writing Taylor series expansions including up to second

order terms for the eight points surrounding (M ,a ) , we
s s

obtain

D(M
s+

AM,a
s
+Aa) = D(M8+1 ,a s+1 ) D(M

s
,a

s
) (C.5)

+ ^W + Aa ^~
9a

+
(AM) 2

3
2
D +

(Aa) 2
3
2
p

2
3M

2 2 3a 2
+ AMAa

3
2
D

D(M -AM,a -Aa) = D(M , ,a _) * D(M ,a )
s ' s s-1' s-1 s' s

(C.6)

- AM 3D
3M

- Aa ;r—
3a

+
(AM)

2
3
2
D

s 2 3M
2

(Aa) 2
3
2
D

3a'

+ AMAa
3
2
D

3M3a

D(M -AM, a +Aa) = D(M . ,a .. )
= D(M ,a )

s * s s-1 5 s+1 s* s
(C.7)

- AM 3D
3M

+ Aa|°
3a

+
(AM)

2
3
2
D +

(Aa) 2
3
2
D

2
3M

2
3a 2

- AMAa
3
2
D

D(M
s
+AM,a

s
-Aa) = D(Mg+1

,a
s _ 1

)
* D(M

s
,a

g
) (C.8)

+ AM 3D
"3~M

- Aa 3D
3a

+
(AM) 2

3
2
D

+
(Aa) 2

3
2
p

2
3M

2
3a 2

- AMAa
3
2
D

3M3a

3DD(M +AM,a ) = D(M ,. , a ) = D(M ,a ) + AM ^s ' s s+1' s s* s 3M
+

(AM) 2
3
2
D

s
2 3M

2

(C.9)
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D(M -AM,a )
s s

D(M
s_

1>a5 ) D(M
s
,a

s
) AM &n 3M

. (AM)
2

3
2
D

2 2
s

d
3M

(CIO)

D(M .a +Aa)
S S

= D(M
s
,as+1 )

" ^V ^ + Aa f£
(Aa)

2
3
2
D

2 a 2
s 3a

(C.ll)

D(M
s
,a

s
-Aa) D(M

s
,a

s_ 1
) D(M

s>
a
s

)
a 3D
Aa s

—

3a
+ (A")

2
3
2
D

2 » 2
s 3a

(C.12)

Subtracting equation (CIO) from equation (C.9), we obtain

D (M
s + l*

a
s

) " D(M
s-l>

a
s

) ' 2AM
I

3D
M

or

3D
3M

D(M
s+ l'

a
s

) - D(M
s-l'

a
s

)

2AM
(C.13)

Subtracting equation (C12) from equation (C.ll), we obtain

3D
D<*B«W " D(M

S'°B-1 )
= 2Att IS

or

3D
3a

D < Ms'°s+l ) " D(M
s'

a
s-l )

2Aa
(C.1H)
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Adding equation (CIO) to equation (C.9), we obtain

D (M
s+ l>

a
s

) + D<Vl-«.> = 2D( M
s .«s ) + (AM)2 "~3

3M

or

9
2
D «

D (M
s + l'«s ) • 2D < Ms' a s>

+ ^"s-l^s 5

8M (AM)'
(C15)

Adding equation (C.12) to equation (C.ll), we obtain

D (M
B'

a
8+ l

) + ^S^S-l 5 " 2D <MS'°S>
+ (Aa)2 H

3a

or

9
2
D

8a

D(Msi qs+1 ) - 2D(M
s>

a
s

) + D^a^)
(Aa)

2
(C.16)

Subtracting equation (C.7) plus equation (C.8) from equation

(C.5) plus equation (C.6), we obtain

D<*W<W + D«Vl«°8-l ) - D(M
S-1'°S+1 ) - D(M

S+1'°S-1 )
Z

IJAMAa
9
2
d

9M9a
(C.17)

or

3M8a
JTAMAa
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A Taylor series is written for the point (M,a). Using

equations (C.13), C.ll), (C.15), (C.16), and (C.17), we may

reduce this series to

D(M
s
+eAM,a

s
+<f>Aa) = D(M,a) = D(M

s>
a
s

) + | [D(M
s+1

,a
s

) - DO^,^)]

+
I ^^s'W-^s'Vl" + V ^(M

S+l» s )
-5DCM

S'OS
)4D(M8-rO8):i

+ V tD(M
s
,a
s+1

) +D(M
s)
a
s_1

)-2D(M
s
,a

s
)]

'+$ ^s+i'Vi^Vi'Vi^s-i'Vi^s+i'Vi"

Rearranging, we have

D(M,cO = *$ D(M
8_1 ,oB_1 ) + iSA^n. D(M

s
,o

g_1 )

" ¥ D <MS+l'«s-l'
+ ^T^ D»W».>

+ (l-e
2
-*

2
) D(M.,o.)

19^
t \





Equation (C.19) is the expression used to interpolate for

the value of D in terms of the surrounding none tabular

points. To obtain expressions for the required partial

derivatives, observe that

M = M + 6AM (C.20)
s

and

a = a + <J>Aa . (C.21)
s

Therefore,

d9 _1_
dM " AM

and

(C.22)

(C.23)
d£ _ _1_
da Aa

The chain rule for partial derivatives yields

|S «.•«.•»+*«> - |§ (M..) - Sfig^Sl
|| . (C.2M

Taking the partial derivative of equation (C.19) with

respect to 6, we obtain
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§ CM,a) - ^ [ f DCM^.a^) - f D(M
8+1 ,a^) ^ D(M

s+1
,a

s
)

+ I D<W<W " I D(Ms-l'<W + HT D(rVl»a
S

) (C ' 25)

- 29 D(M
g
,a

s
)] .

Using similar procedures, we may derive the remaining

expressions,

I (M,a) - i C f DCMj^ ^ DCM^a^) - £ DO^.a^)

+
! ^s+l'^W + 2J

T- ^s'Vl 5 " f D(Ms-l'<W (C 26)

- 2<|> D(M
s
,a

s
)]

3
2
D

(M,a) = —^ [D(M
s+1

,a
s

) - 2D(M
s
,a

s
) + D^^,^)] (C.27)

MT (AM)3:

2

£§ (M,a) = -^-2 CDCMg.a^) - 2D(M
s
,«

s
) + D(M

s
,a
s+1 )]

(C.28)
3a (Aa)

(c.29)

- D(Ms-rVi )]

196 » \





APPENDIX D

EMPIRICAL RELATIONS

In the problem treated in Section VI empirical relations

are used for

a = f(H), (D.l)

a = f(H), (D.2)

and

M
M

= f(H) (D.3)

where the parameters are air density ratio (a), speed of

sound (a), maximum Mach number (MM )> and altitude (H) . The

air density ratio is defined as

a - -fi- (D.H)
po

where a is sea' level standard day density. This Appendix

presents these empirical relations and compares the values

obtained from these relations with standard atmospheric

conditions

.

1. Air Density Ratio

The empirical relation used for air density ratio is

-c,h -c h
a = e

x
+ c h * (D.5)
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where

h =
jf-

(D.6)
H
L

and

H
L

= 36,089 ft. (D.7)

c
1

= 1.5^100 (D.8)

c
2

= 1.80445 (D.9)

c = 0.4130 (D.10)

Figure 50 is a plot of the values of a obtained from

equation (D.5) compared to those obtained from standard

atmospheric tables.

2. Speed of Sound

The empirical relation used for the speed of sound is

a = a
o
(l-c

?
h) , h < 1 (D.ll)

= 971 ft. /sec. , h > 1 (D.12)

where the parameter a is the speed of sound at sea level
o

on a standard day; that is

and

a = 1116.89 ft. /sec. (D.13)
o

c
?

= 0.1331 (D.14)

Figure 51 is a plot of a vs. H. The expressions (D.ll) and

(D.12) duplicate exactly the values obtained from standard

atmospheric tables.
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Air density vs. altitude
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3. Maximum Mach Number

The empirical relation used for the maximum Mach

number of the aircraft for the problem solved in Section VI

is

M
M

= 2.1 - 1.1
-2.l»h

(D.15)

Figure 52 is a plot of equation (E.9) along with the actual

restrictions of the aircraft under consideration.

2.2

100

altitude (ft. x NT)

Figure 52

Placard Mach number vs. altitude

201 \





APPENDIX E

A CONVEXITY THEOREM

In this Appendix the following theorem on convexity is

proved.

Theorem 1; If f(x) is convex on R where x e

R

n
, and f > 0,

K n
then f (x) is convex on R where K is any positive integer.

This theorem Is proved by mathematical induction. First,

the following theorem is proved.

Theorem 2; If f(x) is convex on R where x eR , and f >_ 0,

then f (x) is convex on R .

Proof: The function f(x) is convex if

f[Xx
2

+ (l-A)^] < Xf(x
2

) + (1-X)f(x
1

) (E.l)

for all x,, x~ and X e [0,1], Squaring both sides of

Inequality (E.l) we have

f
2
[Xx

2
+ (1-X)x

1
] < [Xf(x

2
)+ (1-X)f(x

1
)]

2
. (E.2)

The sense of the inequality (E.2) is retained as f _> 0. To

p
prove that f (x) is convex, it must be shown that

f
2
[Xx

2
+ (1-X)^] < Xf

2
(x

2
) + (1-X)f

2
(x

1
) . (E.3)

Observing inequality (E.2), (E.3) is seen to be a true

inequality if it can be shown that
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[Xf(x
2

) + (1-X)f(x
1
)]

2
< Xf

2
(x

2
) + (1-X)f 2

(x
1

) . (E.H)

To show that inequality (E.4) is true, we proceed as follows

Since X e [0,1], it is true that

X[f(x
2

) - f(x
x )]

2
< Ef(x

2
)- f(x

1
)]

2
. (E.5)

Expanding inequality (E.5), we have

X[f(x
2

- f(x
1
)]

2
< f

2
(x

2
) - 2f(x

2
)f(x

1
) + f

2
(x

x
) .(E.6)

Rearranging inequality (E.6), we have

X[f(x
2

) - f(x
1
)]

2
+ 2f(x

2
)f(x

1
) - f

2
(x

x
) < f

2
(x

2
).(E.7)

p
Subtracting f (x, ) from both sides, we obtain

X[f(x
2

) - f(x
1
)]

2
+ 2f(x

1
)[f(x

2
) - f(x

1
)] < f

2
(x

2
) - f

2
(x

x
) .

(E.8)

Multiplying inequality (E.8) by X , we have

X
2
f
2
(x

2
) - 2X

2
f(x

2
)f(x

1
) + X

2
f
2
(x

x
) + 2Xf(x

x
)f(x

2
) (E.9)

- 2Xf
2
(x, ) < Xf

2
(x ) - Xf

2
(x, ) .
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2Adding f (x,) to both sides of inequality (E.9), we obtain

X
2
f
2
(x

2
) - 2X

2
f(x

2
)f(x

1
) + 2Xf(x

1
)f(x

2
) + r

2
(x

±
)

(E.10)

-2Xf 2
(x

1
) + X

2
f
2
(x

1
) < Xf

2
(x

2
) - Xf 2 (x

1
) + f

2
(x

1
) .

Simplifying Inequality (E.10), we obtain

[Xf(x
2

) + (1-X)f(x
1
)]

2
< Xf

2
(x

2
)+ (1-X)f 2

(x
1

) . (E.ll)

This is the inequality we set out to show. The theorem is

proved.

Second, the following theorem is proved.

Theorem 3: If f (x) is convex on R
n

where xeRn , and f >_ 0,

then f (x) is convex on R .

Proof: It has already been shown that if f(x) is convex and

2
f > 0, then f (x) is convex. It is now assumed that

f
K
[Xx

2
+ (1-X)x

1
l < Xf

K
(x

2
) + (l-X)fK (x

1
) . (E.12)

Multiplying both sides of inequality (E.12) by f[Xx
2

+ (1-X)x
1

]

a positive quantity, we obtain

f
K+1

[Xx
2

+ (1-X)^] < [Xf
K
(x

2
)+(l-X)f

K
(x

1
)]{f[Xx

2
+(l-X)x

1
]}

(E.13)
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Substituting the expression (E.l) into inequality (E.13),

we have

f
K+1

[Xx
2
+(l-X)x

1
] < [Xf

K
(x

2
)+(l-X)f

K
(x

1
)][Xf(x

2
)+(l-X)f(x

1
)]

(E.lH)

To prove that f (x) is convex it must be shown that

fK+1[X
$2

+(1" X)
?l ] - XfK+1(

^2 ) + d-^) fK+1 (x
1 ) •

(E.15)

Observing inequality (E.14), (E.15) is seen to be a true

inequality if it can be shown that

[Xf
K
(x

2
)+(l-X)f

K
(x

1
)][Xf(x

2
)+(l-X)f(x

1
)] < Xf**

1^) + (l-X)^1^) .

(E.16)

To show that inequality (E.16) is true we proceed as follows

The expression

[f
K
(x

2
) - f

K
(x

1
)][f(x

2
) - f(x

x
)] (E.17)

is always a positive number because the signs of the expres-

sions in parentheses in expression (E.17) must be the same.

The following inequality holds

X[f
K
(x

2
)-f

K
(x

1
)][f(x

2
)-f(x

1
)] < [f

K
(x

2
)-f

K
(x

1
)][f(x

2
)-f(x

1
)]

(E.18)
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Expanding and multiplying by X, we obtain

X
2
[f
K+1

(x
2
)-f

K
(x

1
)f(x

2
)-f(x

1
)f
K
(x

2
)+f

K+1
(x

1
)] <

X[f
K+1

(x
2
)-f

K
(x

1
)f(x

2
)-f(x

1
)f

K
(x
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K+lRearranging inequality (E.19) and subtracting 2Xf (x,)

from both sides, we obtain
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+ X[f
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Further expansion and rearranging yields

X
2
f
K+1

(x
2
)+Xf

K
(x

1
)f(x

2
)-X

2
f
K
(x

1
)f(x

2
)+Xf(x

1
)f

K
(x

2
)-X

2
f(x

1
)f

K
(x

2
)

- 2Xf
K+1

(x
1
)+X

2
f
K+1

(x
1

) < Xf
K+1

(x
2
)-Xf

K+1
( Xl )

(E.21)

K+l
Adding f (x,) to both sides and rearranging further, we

have
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(E ' 22)

or
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(E.23)
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This is the inequality we set out to show in (E.16). The

theorem is proved.

It has been shown that if f (x) is convex and f <_ then

2 3
f (x) is convex. By Theorem 3, f (x) is convex. By

I]

Theorem 3 again, f (x) is convex. This reasoning can be

followed for all powers K where K is a positive integer.

The basic theorem is established.

207





LIST OF REFERENCES

1. Bryson, A. E., "Applications of Optimal Control Theory
in Aerospace Engineering," Journal of Spacecraft and
Rockets , v. 4, no. 5, p. 5^5-553, Hay 1967.

2. Bryson, A. E. and Denham, W. P., "A Steepest-Ascent
Method for Solving Optimum Programming Problems,"
Journal of Applied Mechanics , p. 247-257, June 1962.

3. Bryson, A. E. and Hedrick, J. K., "Minimum Time Turns
for a Supersonic Airplane at Constant Altitude,"
Journal of Aircraft , v. 8, no. 3, p. 182-187, March 1971.

4. Bryson, A. E., Hoffman, W. C, and Desai, M. N., The
Energy-State Approximation in Performance Optimization
of Supersonic Aircraft , AIAA Paper 68-877, Pasadena,
California, August 1968.

5. Kelley, H. J. and Edelbaum, T. N., "Energy Climbs, Energy
Turns, and Asymptotic Expansions," Journal of Aircraft

,

v. 7, no. 1, p. 93-95, January-February 1970.

6. Kelley, H. J. and Lefton, L., Differential Turns , paper
presented at AIAA Atmospheric Flight Mechanics Special-
ists Conference, Palo Alto, California, 11-13 September
1972.

7. Landgraf, S. K., "Some Applications of Performance
Optimization Techniques to Aircraft," Journal of Aircraft ,

v. 2, no. 2, p. 153-154, March-April 1961H

8. Taylor, L. W., Smith, H. J., and Iliff, K. W., "Experience
Using Balakrishnan' s Epsilon Technique to Compute Optimum
Flight Profiles," Journal of Aircraft , v. 7, no. 2,

p. 182-197, March-April 1970.

9. Fiacco, A. V. and McCormick, G. P., Nonlinear Programming:
Sequential Unconstrained Minimization Techniques , Wiley,
1968.

10. Jones, A. P. and McCormick, G. P., "A Generalization of
the Method of Balakrishnan: Inequality Constraints and
Initial Conditions," SIAM Journal on Control , p. 218-225,
May 1970.

11. Taylor, J. M. , Optimization: Application of the Epsilon
Method , Ph.D. Thesis, Dept. of Electrical Engineering,
University of Wyoming, Laramie, 1970.

208

1





12. Taylor, J. M. and Constantlnldes, C. T. , "Optimization:
Application of the Epsilon Method," IEEE Transactions on
Automatic Control , p. 128-131, February 1972.

13. Department of Engineering, University of California
Los Angeles Report 67-61, On a New Computing Technique
in Optimal Control , by A. V. Balakrishnan, December 1967,

lH . Balakrishnan, A. V., On a New Computing Technique in
Optimal Control and Its Application to Minimal Time
Flight Profile Optimization , paper presented at Inter-
national Colloquium on Methods of Optimization, 2nd,
Novosibirsk, USSR, June 1968.

15. Athans, M. and Falb, P. L. , Optimal Control: An
Introduction to the Theory and Its Applications ,

McGraw-Hill, 1966.

16. Kirk, D. E., Optimal Control Theory: an Introduction ,

Prentice-Hall, 1970.

17. Rockafellar, R. T., Convex Analysis , Princeton, 1970.

18. Rockafellar, R. T., "Integrals Which are Convex
Functionals," Pacific Journal of Mathematics , v. 2^4,

no. 3, P. 525-539, 196b.

19. Miele, A., Flight Mechanics: Theory of Flight Paths ,

Addison-Wesley, 1962.

209





INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Documentation Center 2

Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0212 2

Naval Postgraduate School
Monterey, California 939^0

3. Chairman, Department of Aeronautics 1
Naval Postgraduate School
Monterey, California 939^0

4. Chairman, Department of Electrical Engineering 1
Naval Postgraduate School
Monterey, California 939^0

5. Professor D. E. Kirk, Code 52Ki 3
Department of Electrical Engineering
Naval Postgraduate School
Monterey, California 939*10

6. Professor F. D. Faulkner, Code 53Fa 1
Department of Mathematics
Naval Postgraduate School
Monterey, California 939^0

7. Professor H. A. Titus, Code 52Ts 1

Department of Electrical Engineering
Naval Postgraduate School
Monterey, California 939^0

8. Professor R. A. Hess, Code 57He 1
Department of Aeronautics
Naval Postgraduate School
Monterey, California 939^0

9. Professor A. E. Fuhs, Code 57Fu 1

Department of Aeronautics
Naval Postgraduate School
Monterey, California 939^0

10. Professor A. Gerba, Code 52Gz 1

Department of Electrical Engineering
Naval Postgraduate School
Monterey, California 939^0

210





No. Copies

11. Dr. D. E. Zilmer, Code 607 1
Naval Weapons Center
China Lake, California 93555

12. CDR. W. J. H. Smithey 1
Department of Aeronautics
Naval Postgraduate School
Monterey, California 939*10

13. CDR. Marie D. Hewett 3
Naval Air Test Center

' Patuxent River, Maryland

211





SECURITY CLASSIFICATION OF THIS PAGE (When !>•<• Fm.rMj

REPORT DOCUMENTATION PAGE READ INSTPUCTiONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (end Subtitle)

A Second-Order Epsilon Method for
Constrained Trajectory Optimization

5. TYPE OF REPORT ft PERIOD COVERED

Ph.D. Thesis;
June, 197^
6. PERFORMING ORG. REPORT NUMBER

7. AUTHORf»;

Marie David Hewett

». CONTRACT OR GRANT NUMBERS

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, California 939^0

10. PROGRAM ELEMENT. PROJECT, TASK
AREA ft WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS

Naval Postgraduate School
Monterey, California 939^0

12. REPORT DATE

June 197^
13. NUMBER OF PAGES

213
14. MONITORING AGENCY NAME * ADDRESSf// dlllaront from Controlling Otllce)

Naval Postgraduate School
Monterey, California 939^0

15. SECURITY CLASS, fo/ thl* report)

Unclassified

15». DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT fo/ thl* Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT fo/ the mbetrmel entered In Block 20, It dlll*r*nt Irooi Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Contlnu* on reverie mid* 11 n*c****ry end Idtntlty by block number)

optimization aircraft state
trajectory limitation control
inequality penalty missile
performance convexity

20. ABSTRACT (Contlnut on r*v*r** eld* U n*c****ry and Identity by block number)

A second-order epsilon method is developed for trajectory
optimization problems. The method is applied to several
aircraft and missile performance and air combat maneuvering
problems. Heavy emphasis is placed on the realistic modeling
of the flight vehicle's motion and maneuvering limitations.

The proposed optimization technique, which is an extension
of Balakrishnan' s epsilon method, uses either the full

DD ,:°S
M
73 1473

(Page 1)

EDITION OF I NOV 6S IS OBSOLETE
S/N 102-014- 6601

I

212
SECURITY CLASSIFICATION OF THIS PAGE (Wh*n D*t* Knl*r*d)





CfcCUKITY CLASSIFICATION OF THIS P»0Ef»1itn Dmlm Enfrtd)

(20. continued)

second-order Newton-Raphson method or the "modified" Newton-
Raphson method to minimize the epsilon functional. The full
Newton-Raphson method exhibits terminal convergence characteristics
superior to the "modified" method, whereas the "modified" method
is generally superior in the initial stages of a problem. An
algorithm is developed which uses both techniques in a
complementary way.

A new penalty functional which has desirable theoretical
Droperties and exhibits excellent computational behavior is
introduced to treat state and control inequality constraints.

DD Form 1473 (BACK)
1 Jan 73

S/N 0102-014-G601 -SECURITY CLASSIFICATION OF THIS PAGEn»T>«n Dmlm Bntmrmd)





1 CI o
05

Hewett
A second-order epsi

ion method for con-
strained trajectory
optimization.

r

Thesis

H52624

151205
Hewett

A second-order epsf-

Ion method for con-
strained trajectory
optimization.



lhesH52624

A second-order epsilon method for constr

3 2768 00191933 5 »

DUDLEY KNOX LIBRARY C i /


